BIOKONVERSI LIMBAH ORGANIK MENGHASILKAN LIPID BERNILAI EKONOMIS MENGGUNAKAN MIKROALGA AURANTIOCHYTRIUM DARI HUTAN BAKAU BUNAKEN, SULAWESI UTARA

Suhendra Suhendra, Sekar Pratiwi, Hutri Puspita Sari, Andri Hutari

Abstract


Modernisasi dan industrialisasi telah merevolusi sektor pangan dan pertanian yang mengarah pada peningkatan dramatis dalam produktivitas dan pemasarannya. Dampaknya adalah peningkatan produksi makanan dan limbah agroindustri. Untuk mengatasi problematika masalah sampah secara terpadu, perlu dikembangkan strategi berkelanjutan yang sangat tergantung pada pemahaman tentang tantangan teknologi dan ekonomi. Terkait dengan itu, perlu dieksplorasi teknologi untuk mengkonversi limbah organik menjadi produk bernilai ekonomi tinggi, antara lain melalui biokonversi menggunakan mikroalga. Salah satu mikroalga yang menarik perhatian besar dunia industri dunia adalah spesies Aurantiochytrium sp. yang saat telah dikembangkan di Eropa dan Amerika pada skala industri. Mikroalga spesies Aurantiochytrium dikenal memiliki habitat hutan bakau dan pertumbuhannya yang cepat dalam produksi asam lemak tak jenuh ganda (lemak tak jenuh rantai panjang PUFA) dengan nilai ekonomi tinggi. Meski Indonesia dikenal sebagai negara dengan hutan bakau terluas di dunia, tetapi kajian teknik kultivasi mikroalga Aurantiochytrium belum banyak dipublikasikan dengan isolat lokal Indonesia. Produk yang dapat dihasilkan dari mikroalga ini salah satunya yaitu omega-3 DHA (Docosahexaenoic acid). Asam lemak tak jenuh rantai ganda (Polyunsaturated Fatty Acids/ PUFA) omega-3 sangat dibutuhkan tubuh manusia, seperti pencegah penyakit jantung dan diabetes, pertumbuhan sel otak dan lain sebagainya. Produksi PUFA secara ekonomis dari biokonversi mikroalga Aurantiochytrium tergantung dari nutrisi yang digunakan. Karenanya, tujuan penelitian ini adalah mempresentasikan teknik kultivasi mikroalga heterotropik menggunakan mikroalga Aurantiochytrium yang masih jarang dipaparkan pada publikasi nasional. Kedua, memaparkan kemampuan biokonversi limbah organik dengan mikroalga Aurantiochytrium yang berasal dari hutan bakau Bunaken, Sulawesi Utara. Penelitian ini dimulai dengan isolasi sampel mikroalga dari hutan bakau Bunaken dan melakukan teknik isolasi direct plating hingga dihasilkan isolat murni. Setelah itu, dilakukan kultivasi dengan sumber nutrisi dari limbah melon, limbah apel, limbah molasses dan limbah air kelapa. Kultivasi dilakukan dalam tiga tahapan, masing-masing tahap standing culture (SC, 48 jam), pre-culture (PC, 48 jam) dan main culture (MC, 120 jam). Pada tahap kultivasi utama (MC) perbandingan sumber nitrogen dan sumber karbon masing-masing 12,5 gram (sumber nitrogen) dan 37,5 gram (sumber karbon). Sumber karbon berasal dari molasses (hasil samping pabrik gula), sampah buah melon, sampah buah apel dan air kelapa. Hasil penelitian ini menunjukkan bahwa mikroalga mikroalga Aurantiochytrium dapat tumbuh pada media yang digunakan. Selain itu, biomassa yang dihasilkan berwarna kuning cerah berbau amis seperti ikan. Dari variable jenis limbah organik yang dipakai, sampah limbah buah melon menghasilkan biomassa tertinggi, yaitu 99,4 gram/ liter. Potensi produk omega-3 yang dihasilkan bermanfaat untuk dikembangkan di sektor perikanan, peternakan, nutrisi, kosmetika dan farmasi. Oleh karena itu, dengan penelitian ini, kedepan topik penelitian biokonversi ini semoga dapat bermanfaat untuk dikembangkan dalam menghasilkan produk-produk yang memiliki nilai tambah ekonomi bagi negara demi terwujudnya negara dengan nilai gizi masyarakat dalam program ketahanan pangan dan obat-obatan nasional

References


Aasen, I. M., Ertesvåg, H., Heggeset, T. M. B., Liu, B., Brautaset, T., Vadstein, O., & Ellingsen, T. E. (2016). Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Applied Microbiology and Biotechnology, 100(10), 4309–4321. https://doi.org/10.1007/s00253-016-7498-4

Aasen, I. M., Ertesvåg, H., Marita, T., Heggeset, B., Liu, B., Brautaset, T., Vadstein, O., & Ellingsen, T. E. (2016). Thraustochytrids as production organisms for docosahexaenoic acid ( DHA ), squalene , and carotenoids. Applied Microbiology and Biotechnology, 1, 4309–4321. https://doi.org/10.1007/s00253-016-7498-4

Abdel-wahab, M. A., El-samawaty, A. E. M. A., Elgorban, A. M., & Bahkali, A. H. (2021). Biological Sciences Fatty acid production of thraustochytrids from Saudi Arabian mangroves. Saudi Journal of Biological Sciences, 28(1), 855–864. https://doi.org/10.1016/j.sjbs.2020.11.024

Chen, L., Qian, X., Zhang, X., Zhou, X., Zhou, J., Dong, W., Xin, F., Zhang, W., Jiang, M., & Ochsenreither, K. (2021). Co-production of microbial lipids with valuable chemicals. Biofuels, Bioproducts and Biorefining, 15(3), 945–954. https://doi.org/10.1002/bbb.2209

Fossier, L., Lee, K. J., Nichols, P. D., Mitchell, W. J., Polglase, J. L., & Gutierrez, T. (2018). Taxonomy , ecology and biotechnological applications of thraustochytrids : A review. Biotechnology Advances, 36(1), 26–46. https://doi.org/10.1016/j.biotechadv.2017.09.003

Humaidah, N., Nakai, S., Nishijima, W., Gotoh, T., & Furuta, M. (2020). Application of Aurantiochytrium sp. L3W for food-processing wastewater treatment in combination with polyunsaturated fatty acids production for fish aquaculture. Science of the Total Environment, 743(November), 1–5. https://doi.org/10.1016/j.scitotenv.2020.140735

Hutari, A., Hidayat, W., Mustopa, A. Z., & Neubauer, P. (2016). Docosahexaenoic acid (DHA) production of new strain of Indonesian Thraustochytrid Aurantiochytrium sp. LR52 in single use TubeSpin 600 system (P29). Bioprocess Intensification through Process Analytical Technology (PAT) and Quality by Design (QbD), April.

Jaseera, K. V. (2018). Isolation and phylogenetic identification of heterotrophic thraustochytrids from mangrove habitats along the southwest coast of India and prospecting their PUFA accumulation. 1994.

Khajuria, A., Atienza, V. A., Chavanich, S., Henning, W., Islam, I., Kral, U., Liu, M., Liu, X., Murthy, I. K., Oyedotun, T. D. T., Verma, P., Xu, G., Zeng, X., & Li, J. (2022). Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals. Circular Economy, 1(1), 100001. https://doi.org/10.1016/j.cec.2022.100001

Kumar, Y., Kaur, S., Kheto, A., Munshi, M., Sarkar, A., Pandey, H. O., Tarafdar, A., & Sirohi, R. (2022). Cultivation of microalgae on food waste : Recent advances and way forward. Bioresource Technology, August, 8–10.

Laddha, H., Pawar, P. R., & Prakash, G. (2021). Bioconversion of waste acid oil to docosahexaenoic acid by integration of “ex novo’’ and “de novo’’ fermentation in Aurantiochytrium limacinum. Bioresource Technology, 332(July), 9–12. https://doi.org/10.1016/j.biortech.2021.125062

Lee, G. I., Shin, W. S., MoonGeun Jung, S., Kim, W., Lee, C., & Kwon, J. H. (2020). Effects of soybean curd wastewater on growth and DHA production in Aurantiochytrium sp. Lwt, 134(December), 2020–2022. https://doi.org/10.1016/j.lwt.2020.110245

Lehmann, C., Cruz-Jesus, F., Oliveira, T., & Damásio, B. (2022). Leveraging the circular economy: Investment and innovation as drivers. Journal of Cleaner Production, 360(August), 1–9. https://doi.org/10.1016/j.jclepro.2022.132146

Li, S., Zhao, S., Yan, S., Qiu, Y., Song, C., Li, Y., & Kitamura, Y. (2019). Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production — A review. Chinese Journal of Chemical Engineering, 27(12), 2845–2856. https://doi.org/10.1016/j.cjche.2019.03.028

Lowrey, J., Brooks, M. S., & Armenta, R. E. (2016). Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid. Applied Microbiology and Biotechnology, 4711–4721. https://doi.org/10.1007/s00253-016-7463-2

Maria, A., Finco, D. O., Maria, A., Finco, D. O., Daniel, L., Mamani, G., De, J. C., Vinícius, G., Pereira, D. M., Thomaz-soccol, V., Soccol, R., Maria, A., Finco, D. O., Daniel, L., Mamani, G., & De, J. C. (2016). Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology, 0(0), 000. https://doi.org/10.1080/07388551.2016.1213221

Morales-Sánchez, D., Martinez-Rodriguez, O. A., & Martinez, A. (2017). Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. Journal of Chemical Technology and Biotechnology, 92(5), 925–936. https://doi.org/10.1002/jctb.5115

Nazir, Y., Halim, H., Al-Shorgani, N. K. N., Manikan, V., Hamid, A. A., & Song, Y. (2020). Efficient conversion of extracts from low-cost, rejected fruits for high-valued Docosahexaenoic acid production by Aurantiochytrium sp. SW1. Algal Research, 50(September), 1–11. https://doi.org/10.1016/j.algal.2020.101977

Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2020). Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. Science of the Total Environment, 736, 139691. https://doi.org/10.1016/j.scitotenv.2020.139691

Pleissner, D., & Rumpold, B. A. (2018). Utilization of organic residues using heterotrophic microalgae and insects. Waste Management, 72, 227–239. https://doi.org/10.1016/j.wasman.2017.11.020

Raghukumar, S. (2008). Thraustochytrid Marine Protists : Production of PUFAs and Other Emerging Technologies. Mar Biotechnol. https://doi.org/10.1007/s10126-008-9135-4

Spalvins, K., Zihare, L., & Blumberga, D. (2018). Single cell protein production from waste biomass: Comparison of various industrial by-products. Energy Procedia, 147, 409–418. https://doi.org/10.1016/j.egypro.2018.07.111

Suhendr, S., Zahro, H., Sulistiawati, E., & Hutari, A. (2020). Potensi Mikroalga Aurantiochytium: Dari Pakan Ternak, Biodiesel Hingga Vaksin Covid-19. https://doi.org/https://doi.org/10.24853/konversi.8.1.10

Suhendra, Chuzaimah, Andri Hutari, A. G. E. S. (2022). Isolasi Mikroalga Aurantiochytrium Dari Hutan Bakau Hingga Isolat Murni : In HKI, Kementrian Hukum dan Hak Asasi Manusia, HKI Nr:: EC00202208612, 5 Februari 2022 :

Suhendra, Martomo Setiawan, Endah Sulistiawati, S. W. N. (2022). Prosiding Seminar Nasional Rekayasa Bahan Alam. https://www.ptonline.com/articles/how-to-get-better-mfi-results

Suhendra. (2020). Isolation of Marine Microalgae. https://www.youtube.com/watch?v=91cvOZ1A4I8

Suhendra, Chuzaimah, Hutari, A., & Saputro, A. G. E. (2022a). Isolasi Mikroalga Aurantiochytrium dari Hutan Bakau. https://www.youtube.com/watch?v=0PRdXOxHNI8

Suhendra, Chuzaimah, Hutari, A., & Saputro, A. G. E. (2022b). Isolasi Mikroalga dari Hutan Bakau.

Suhendra, Chuzaimah, Hutari, A., & Saputro, A. G. E. (2022c). Potensi Mikroalga Aurantiochytrium Dari Pakan Ternak, Biodiesel Hingga Vaksin Covid-19.

Suhendra, E., S., H., Z., & A, H. (2019). Kajian Singkat Rancang Bangun Pabrik Docohexanoic Acid dari Mikroalga Species Aurantiochytrium dari Hutan Bakau Indonesia. Konversi, 8(1), 33–44.

Suhendra, Pantoiyo, T., Fazlia, S., Sulistiawati, E., & Evitasari, R. T. (2021). Bioprocess Potentials of Squalene from Thraustochytrids Microalgae for Nutraceuticals in New Normal Era Isolated from Indonesian Mangroves: A Review. CHEMICA, 8(1).

Suhendra, Sulistiawati, E., Evitasari, R., Ariandi, T. R., Septianingsih, L., & Andri Hutari. (2021). Potentials of Omega-3 Rich Microalgae from Kulonprogo Mangrove Forest Yogyakarta for Nutraceuticals and Pharmaceuticals Products. Second International Symposium of Indonesian Chemical Engineering (2nd ISIChem 2021).

Suhendra, Yuniasih, D., Lira Amanda Ningtias, G. W., Saputra, A. G. E., & Hutari, A. (2021). Bioprocess of of Astaxanthin Production as Functional Food from Aurantiochytrium Microalgae: A Review. CHEMICA: Jurnal Teknik Kimia, 8(2). http://journal.uad.ac.id/index.php/CHEMICA/article/view/21954

Verma, M. L., Kishor, K., Sharma, D., Kumar, S., & Sharma, K. D. (2019). Microbial production of omega-3 polyunsaturated fatty acids. In Biotechnological Production of Bioactive Compounds. Elsevier B.V. https://doi.org/10.1016/B978-0-444-64323-0.00010-2

Yafetto, L. (2022). Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, 8(3), e09173. https://doi.org/10.1016/j.heliyon.2022.e09173

Yaguchi, T., Tanaka, S., Yokochi, T., Nakahara, T., & Higashihara, T. (1997). Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. JAOCS, Journal of the American Oil, 1997.




DOI: https://doi.org/10.24853/konversi.12.1.8

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jurnal Konversi Indexed By

doaj gsgarudasincroisjdonebase oneone

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Powered by Puskom-UMJ