Aplikasi Hibrida Nanofluida Di Sistem Pendingin Kendaraan Ringan Roda Empat

Anwar Ilmar Ramadhan, Hasan Basri, Ery Diniardi, Deni Almanda

Abstract


Banyak peneliti telah melaporkan potensi karakteristik nanofluida dibandingkan dengan cairan konvensional (yaitu air, etilen glikol, dan minyak), yang telah memperluas konsep penggunaannya dalam berbagai sistem. Sifat termal dan hidrodinamik nanofluida menjadikannya kandidat terbaik untuk digunakan dalam manajemen termal otomotif. Artikel ini memberikan tinjauan menyeluruh dari penelitian terapan tentang potensi penggunaan nanofluida dalam sistem pendingin otomotif. Dalam studi saat ini, semua parameter kunci yang terutama mempengaruhi kinerja nanofluida dalam sistem pendingin telah diidentifikasi, bersama dengan diskusi logis. Penggunaan nanofluida dalam manajemen termal otomotif telah terbukti menguntungkan; Namun, keberlanjutan fana nanofluida merupakan tantangan utama. Periode suspensi yang pendek dari nanofluida yang efektif secara termal adalah suatu kerugian. Untuk mengatasi masalah keberlanjutan nanofluida konduktif termal tinggi, para ilmuwan menciptakan kelas baru nanofluida yang dikenal sebagai nanofluida hibrida. Nanofluida hibrida mengandung dua jenis nanopartikel, satu dengan konduktivitas termal tinggi dan satu dengan keberlanjutan tinggi, menghasilkan nanofluida yang relatif stabil dan efektif secara termal. Hanya dalam sistem pendingin otomotif nanofluida hibrida telah diuji.


Full Text:

PDF

References


Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-newtonian flows, FED-Vol. 231/MDVol. 66, ASME, New York, p. 99–105.

Sarkar J. A critical review of heat transfer correlations of nanofluids. Renew Sustain Energy Rev 2011;15:3271–7.

Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012;2012:435873.

Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 2008;47(5):560–8.

Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increasedeffective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 2001;78(6):718–20.

Choi C, Yoo HS, Oh JM. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys 2008;8:710–2.

Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 2000;21:58–64. [8] Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res 2011;50:3071–7. [9] Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, et al. Stability and

thermal conductivity characteristics of nanofluids. Thermochim Acta

;455(1-2):70–4.

Murshed SMS, Tan SH, Nguyen NT. Temperature dependence of interfacialproperties and viscosity of nanofluids for droplet-based microfluidics. J PhysD: Appl Phys 2008;41(8):085502.

Chen L, Xie H. Silicon oil based multiwalled carbon nanotubes nanofluid withoptimized thermal conductivity enhancement. Colloids Surf A: Physicochem Eng Asp 2009;352(1–3):136–40.

Wong KV, Leon OD. Applications of nanofluids: current and future. Adv Mech Eng 2010;2010:519659.

Das SK, Choi SUS, Patel HE. Heat transfer in nanofluids – a review. Heat Transf Eng 2006;27(10):3–19.

Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 2007;46:1–19.

Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 2007;11:797–817.

Trisaksria V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 2007;11(3):512–23.

Wang XQ, Mujumdar AS. A review of nanofluids – part I: theoretical and numerical investigations. Braz J of Chem Eng 2008;25(4):613–30.

Wang XQ, Mujumdar AS. A review of nanofluids – part II: experiments and applications. Braz J Chem Eng 2008;25(4):631–48.

Murshed SMS, Leong KC, Yang C. Thermophysical and electrokinetic properties of nanofluids – a critical review. Appl Therm Eng 2008;28: 2109–25.

Yu W, France DM, Routbort JL. Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 2008;29(5):432–60.

Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology 2009;7(2):141–50.

Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 2009;52:3187–96.

Taylor RA, Phelan PE. Pool boiling of nanofluids: comprehensive review of existing data and limited new data. Int J Heat Mass Transf 2009;52:5339–47.

Chandrasekar M, Suresh S. A review on the mechanisms of heat transport in nanofluids. Heat Transf Eng 2009;30(14):1136–50.

Özerinç S, Kakaç S, Yazicio|glu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 2010;8 (2):145–70.

Paul G, Chopkar M, Manna I, Das PK. Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev 2010;14 (7):1913–24.

Terekhov VI, Kalinina SV, Lemanov VV. The mechanism of heat transfer in nanofluids: State of the art (review). Part 1. Synthesis and properties of nanofluids. Thermophys Aeromech 2010;17(1):1–14.

Terekhov VI, Kalinina SV, Lemanov VV. The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat transfer. Thermophys Aeromech 2010;17(1):157–71.

Barber J, Brutin D, Tadrist L. A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res Lett 2011;6(1):280.

Fan J, Wang L. Review of heat conduction in nanofluids. J Heat Transf 2011;133(4) (Article No. 040801).

Murshed SMS, Castro CAN, Lourenc MJV, Lopes MLM. Santos FJV. A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev 2011;15:2342–54.

Ahmed HE, Mohammed HA, Yusoff MZ. An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sustain Energy Rev 2012;16:5951–93.

Ramadhan, A. I., Azmi, W. H., Mamat, R., Hamid, K. A., & Norsakinah, S. (2019). Investigation on stability of tri-hybrid nanofluids in water-ethylene glycol mixture. In IOP Conference Series: Materials Science and Engineering (Vol. 469, No. 1, p. 012068). IOP Publishing.

Ramadhan, A. I., Azmi, W. H., Mamat, R., & Hamid, K. A. (2020). Experimental and numerical study of heat transfer and friction factor of plain tube with hybrid nanofluids. Case Studies in Thermal Engineering, 22, 100782.

M. Ali, A.M. El-Leathy, Z. Al-Sofyany, The effect of nanofluid concentration on the

cooling system of vehicles radiator, Adv. Mech. Eng. 6 (2014) 962510, https://

doi.org/10.1155/2014/962510.

B. M’hamed, N.A. Che Sidik, M.F.A. Akhbar, R. Mamat, G. Najafi, Experimental study

on thermal performance of MWCNT nanocoolant in Perodua Kelisa 1000cc radiator

system, Int. Commun. Heat Mass Transf. 76 (2016) 156–161, https://doi.org/10.

/j.icheatmasstransfer.2016.05.024.

S.K. Saripella, W. Yu, J.L. Routbort, D.M. France, U. Rizwan, Effects of nanofluid

coolant in a class 8 truck engine, SAE Tech. Pap. Ser. 1 (2010) https://doi.org/10.

/2007-01-2141.

F. Micali, M. Milanese, G. Colangelo, A. de Risi, Experimental investigation on 4-

strokes biodiesel engine cooling system based on nanofluid, Renew. Energy 125

(2018) 319–326, https://doi.org/10.1016/j.renene.2018.02.110.

S.M. Peyghambarzadeh, S.H. Hashemabadi, M.S. Jamnani, S.M. Hoseini, Improving

the cooling performance of automobile radiator with Al 2O3/water nanofluid,

Appl. Therm. Eng. 31 (2011) 1833–1838, https://doi.org/10.1016/j.

applthermaleng.2011.02.029.

S.M. Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, M. Seifi Jamnani,

Experimental study of heat transfer enhancement using water/ethylene glycol

based nanofluids as a new coolant for car radiators, Int. Commun. Heat Mass

Transf. 38 (2011) 1283–1290, https://doi.org/10.1016/j.icheatmasstransfer.2011.

001.

D. Chavan, A.T. Pise, Performance Investigation of an Automotive Car Radiator

Operated with Nanofluid as a Coolant, vol. 6, 2015 2–6, https://doi.org/10.1115/

4025230.

D.G. Subhedar, B.M. Ramani, A. Gupta, Experimental investigation of heat transfer

potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator

coolant, Case Stud. Therm. Eng. 11 (2018) 26–34, https://doi.org/10.1016/j.csite.

11.009.

G.S. Sokhal, D. Gangacharyulu, V.K. Bulasara, Heat transfer and pressure drop

performance of alumina–water nanofluid in a flat vertical tube of a radiator,

Chem. Eng. Commun. 205 (2018) 257–268, https://doi.org/10.1080/00986445.

1387853.

C. Selvam, D.M. Lal, S. Harish, Enhanced heat transfer performance of an

automobile radiator with graphene based suspensions, Appl. Therm. Eng. 123

(2017) 50–60, https://doi.org/10.1016/j.applthermaleng.2017.05.076.

C. Selvam, R. Solaimalai Raja, D. Mohan Lal, S. Harish, Overall heat transfer

coefficient improvement of an automobile radiator with graphene based

suspensions, Int. J. Heat Mass Transf. 115 (2017) 580–588, https://doi.org/10.

/j.ijheatmasstransfer.2017.08.071.

S. Sumanth, P. Babu Rao, V. Krishna, T. Seetharam, K. Seetharamu, Effect of carboxyl

graphene nanofluid on automobile radiator performance, Heat Transf. Res. 47

(2018) 669–683, https://doi.org/10.1002/htj.21335.

G.A. Oliveira, E.M. Cardenas Contreras, E.P. Bandarra Filho, Experimental study on

the heat transfer of MWCNT/water nanofluid flowing in a car radiator, Appl.

Therm. Eng. 111 (2017) 1450–1456, https://doi.org/10.1016/j.applthermaleng.

05.086.

H.M. Ali, H. Ali, H. Liaquat, H.T. Bin Maqsood, M.A. Nadir, Experimental

investigation of convective heat transfer augmentation for car radiator using

ZnO-water nanofluids, Energy 84 (2015) 317–324, https://doi.org/10.1016/j.

energy.2015.02.103.

H. Ali, M. Azhar, M. Saleem, Q. Saeed, A. Saieed, Heat transfer enhancement of car

radiator using aqua based magnesium oxide nanofluids, Therm. Sci. 19 (2015)

–2048, https://doi.org/10.2298/TSCI150526130A.

M. Naraki, S.M. Peyghambarzadeh, S.H. Hashemabadi, Y. Vermahmoudi, Parametric

study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator,

Int. J. Therm. Sci. 66 (2013) 82–90, https://doi.org/10.1016/j.ijthermalsci.2012.11.013.

S.Z. Heris, M. Shokrgozar, S. Poorpharhang, M. Shanbedi, S.H. Noie, Experimental

study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant,

J. Dispersion Sci. Technol. 35 (2014) 677–684, https://doi.org/10.1080/01932691.

805301


Refbacks

  • There are currently no refbacks.


Prosiding Seminar Nasional Penelitian LPPM UMJ Indexed by:

Google Scholar

==============================================================================================================

Prosiding Seminar Nasional Penelitian LPPM UMJ
Universitas Muhammadiyah Jakarta
Jl.KH. Ahmad Dahlan Cirendeu Ciputat Jakarta Selatan
Telp : 021 7424950
Fax : 021 7430756

E-ISSN: 2745-6080

==============================================================================================================

Powered by Puskom-UMJ