APLIKASI DETEKSI DINI UNTUK MENGENALI ANAK BERKEBUTUHAN KHUSUS MENGGUNAKAN METODE BUSINESS INTELLIGENCE
Abstract
Anak berkebutuhan khusus dapat ditemui pada beberapa sekolah, baik sekolah reguler maupun non reguler. Terkadang keberadaan anak berkebutuhan khusus disekolah tidak disadari oleh guru, karena kurangnya kompetensi guru untuk mengenali anak berkebutuhan khusus. Apabila hal ini dibiarkan, maka akan sulit untuk menangani anak berkebutuhan khusus, karena kebiasaan anak sudah sulit untuk diubah. Melalui penelitian ini menerapkan sebuah pendekatan baru menggunakan metode business intelligence dengan model Klasifikasi: algoritma C4.5 dan Naïve Bayes, metode ini digunakan untuk membantu proses deteksi dini untuk mengenali anak berkebutuhan khusus. Algoritma C4.5 digunakan untuk menciptakan pola, sehingga didapatkan atribut yang paling berpengaruh sampai yang tidak terlalu berpengaruh dari dataset. Nilai AUC(Area Under Curve) dan Akurasi sebagai model evaluasi. Dan Model perbandingan yang digunakan yaitu Metode Parametrik, Paired T-Test. Jenis berkebutuhan khusus yang digunakan sebagai kategori adalah Attention Deficit Hyperactive Disorder(ADHD), Autism Spectrum Disorder(ASD), Slow Learner, Tuna Laras. Aplikasi web dibangun sebagai sarana untuk melakukan proses deteksi dini. Hasil dari penelitian ini akan memberikan kategori bagi setiap anak, baik berkebutuhan khusus maupun normal. Penelitian ini dilakukan pada TK Kristen Kalam Kudus III Kosambi Baru Jakarta.
Kata kunci: Anak berkebutuhan khusus, Metode Business Intelligence, Model Klasifikasi, Algoritma C4.5, Naïve Bayes
Full Text:
PDFReferences
Aggarwal, C. C., & Yu, P. S. 2007. Privacy-Preserving Data Mining. Security, Privacy and Trust in Modern Data Management.
Agiu, D., Mateescu, V., & Mutean, J. 2014. Business Intelligence overview. Database Systems Journal, V(3), 23–36.
Alshahwan, N., & Harman, M. 2011. Automated web application testing using search based software engineering. 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), 3–12.
American Cancer Society. 2016. Cancer Prevention & Early Detection Facts & Figures 2015-2016, 64.
American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders. Arlington.
Anggarwal, C. C. 2015. Data Mining: The Textbook.
Chen, L., & Banfalvi, G. 2012. Methodologies and Architecture Methodologies and Architecture for the Implementation of a Web Application Bachelor ’ s Thesis.
Cohen, Y., Gordon, D., & Hendler, D. 2013. Early detection of outgoing spammers in large-scale service provider networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7967 LNCS, 83–101.
De Meij, T. G. J., Van Der Schee, M. P. C., Berkhout, D. J. C., Van De Velde, M. E., Jansen, A. E., Kramer, B. W., … De Boer, N. K. H. 2015. Early Detection of Necrotizing Enterocolitis by Fecal Volatile Organic Compounds Analysis. Journal of Pediatrics, 167(3), 562–567.
Gorunescu, F. 2011. Data mining: concepts and techniques. Chemistry &
Han, J., Kamber, M., & Pei, J. 2012. Data Mining: Concepts and Techniques. San Francisco, CA, itd: Morgan Kaufmann.
Hosler, D. M. 2011. Early detection of dreissenid species: Zebra/Quagga mussels in water systems. Aquatic Invasions, 6(2), 217–222.
Hox, J. J., & Boeije, H. R. 2005. Data Collection, Primary vs. Secondary. Encyclopedia of Social Measurement.
Kencana Wulan, D. 2011. PERAN PEMAHAMAN KARAKTERISTIK SISWA CERDAS ISTIMEWA BERBAKAT ISTIMEWA ( CIBI ) DALAM MERENCANAKAN PROSES BELAJAR YANG EFEKTIF DAN SESUAI KEBUTUHAN SISWA. HUMANIORA, 2, 269–276.
Larose, D. T. 2005. Discovering Knowledge in Data. New Jersey: John Wiley & Sons.
Ma, S., Sigal, L., & Sclaroff, S. 2016. Learning Activity Progression in LSTMs for Activity Detection and Early Detection. Cvpr.
Mandriana, I. E., Dewi, C., & Furqon, M. T. 2017. Optimasi Fungsi Keanggotaan Fuzzy Tsukamoto menggunakan Algoritma Genetika untuk Diagnosis Autisme pada Anak, 1(11), 1395–1405.
Matondang, F., Kusumawati, R., & Abidin, Z. 2012. Fuzzy Logic Metode Mamdani Untuk Membantu Diagnosa Dini Autism Spectrum Disorder. Matics, 1(2), 110–116.
Mulas, F., Pilloni, P., Manca, M., Boratto, L., & Carta, S. 2013. Linking Human-Computer Interaction with the Social Web: A web application to improve motivation in the exercising activity of users. 4th IEEE International Conference on Cognitive Infocommunications, CogInfoCom - Proceedings, 351–356.
Network, A. and D. D. M. 2016. Community Report on Autism.
Nikolov, S., & Shah, D. 2012. A nonparametric method for early detection of trending topics. Proceedings of the Interdisciplinary Workshop on Information and Decision in Social Networks, (1), 1–2.
Putra, F. P. 2014. E-JUPEKhu REINFORCEMENT MERUPAKAN SALAH SATU ALTERNATIF E-JUPEKhu, 332–343.
Putri, Z. S., Regasari, R., & Putri, M. 2017. Deteksi Autisme pada Anak Menggunakan Metode Modified K-Nearest Neighbor ( MKNN ), 1(3), 241–248.
Ratri, D. 2016. Psikologi anak berkebutuhan khusus.
Roso-Llorach, A., Forné, C., Macià, F., Galceran, J., Marcos-Gragera, R., & Rué, M. 2014. Assessing the impact of early detection biases on breast cancer survival of Catalan women. SORT Journal, 38(July-December), 139–160.
S, P. D., Suriansyah, M. I., & Novianti, S. 2012. Pendahuluan Metodologi Penelitian, 329–334.
Schiffman, J. D., Fisher, P. G., & Gibbs, P. 2015. Early Detection of Cancer: Past, Present, and Future.
Sianipar, J. J., Furqon, M. T., & Adikara, P. P. 2017. Identifikasi Diagnosis Gangguan Autisme Pada Anak Menggunakan Metode Modified K-Nearest Neighbor ( MKNN ), 1(9), 825–831.
SOROKER, V., A. LA PERGOLA, Y. COHEN, V. ALCHANATIS, O Golomb., E. GOLDSHTEIN, M. BRANDSTETTER. 2013. Early Detection and Monitoring of Red Palm Weevil: Approaches and Challenges.
Witten, I. H., Frank, E., & Hall, M. A. 2011. Data mining. Morgan Kaufmann series in data management systems.
Wu, X., & Kumar, V. 2009. The Top TenAlgorithms in Data Mining.
Xu, T., Jin, X., Huang, P., Zhou, Y., Diego, S., Lu, S., Osdi, I. 2016. Early Detection of Configuration Errors to Reduce Failure Damage This paper is included in the Proceedings of the. Osdi.
Yu, L., Chen, G., Koronios, A., Zhu, S., & Guo, X. 2007. Application and Comparison of Classification Techniques in Controlling Credit Risk. Recent Advances in Data Mining of Enterprise Data: Algorithms and Applications, 2007–2007.
Zeng, L., Li, L., & Duan, L. 2012. Business intelligence in enterprise computing environment. Information Technology and Management, 13(4), 297–310.
Zhao, Z., Resnick, P., & Mei, Q. 2015. Enquiring Minds: Early Detection of Rumors in Social Media from Enquiry Posts. WWW ’15 Proceedings of the 24th International Conference on World Wide Web, 1395–1405.
Zikan, M., & Lempiäinen, H. 2014. DNA methylation markers for early detection of women ’ s cancer : promise and challenges, 6, 311–327.
Refbacks
- There are currently no refbacks.
==============================================================================================================
Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023
ISSN : 2407 – 1846
e-ISSN : 2460 – 8416
==============================================================================================================