Pengembangan Sintesis Enzimatis Sukrosa Ester Menggunakan Substrat Metil Ester Dan Potensinya Sebagai Senyawa Anti Bakteri

Eka Kurniasih, Rahmi Rahmi, Muhammad Dani Supardan, Darusman Darusman

Abstract


Sintesis sukrosa ester (SEs) melalui reaksi enzimatis menggunakan substrat metil ester dan sukrosa. Kondisi reaksi adalah konsentrasi substrat 0,6 g/ml, waktu reaksi 600 menit, dan kecepatan pengadukan 400 rpm. Penelitian bertujuan untuk meningkatkan bilangan ester (BE) melalui pengaruh rasio Novozyme®435 pada 0,1- 1,0% (b/b) dan temperatur reaksi pada 30-75oC. Selanjutnya mengetahui karakteristik fisika-kimia serta potensinya sebagai senyawa anti bakteri. Data pengamatan mengikuti rancangan faktorial 1 faktor (2 kali ulangan). Berdasarkan hasil penelitian, diketahui bahwa temperatur reaksi memberikan pengaruh lebih signifikan dibandingkan Novozyme®435 (p-value ≤ 0,05) terhadap peningkatan BE, pada temperature 40oC sebesar 82,94%. Karakteristik SEs optimal adalah bilangan asam 2,446 mg KOH/g, titik leleh 32oC, densitas 0,285 g/ml, kadar air 0,046%, kadar abu 0,292%, larut dalam H2O dan tidak larut dalam C2H5OH. SEs memiliki sifat anti bakteri dan dapat menghambat pertumbuhan Escherichia coli dengan zona hambat terbesar 12,5 mm selama 3 hari inkubasi.
Kata kunci: Anti Bakteri, Escherichia coli, Lipase, Metil Ester, Sukrosa Ester


Full Text:

PDF

References


Abdulmalek, E., Hamidon, N. F., & Abdul

Rahman, M. B. (2016). Optimization and

characterization of lipase-catalyzed

synthesis of xylose caproate ester in

organic solvents. Journal of Molecular

Catalysis B: Enzymatic, 132, 1–4.

https://doi.org/10.1016/j.molcatb.2016.06.

Adnani, A., Basri, M., Chaibakhsh, N., Ahangar,

H. A., Salleh, A. B., Rahman, R. N. Z. R.

A., & Abdul Rahman, M. B. (2011).

Chemometric analysis of lipase-catalyzed

synthesis of xylitol esters in a solvent-free

system. Carbohydrate Research, 346 (4),

-479.

https://doi.org/10.1016/j.carres.2010.12.02

Andrés, J., Vargas, M., Orduña, J., Metzker, G.,

Eliecer, J., & Boscolo, M. (2020).

Phytochemistry Natural Sucrose Esters :

Perspectives on The Chemical And

Physiological Use Of An Under

Investigated Chemical Class Of

Compounds. Phytochemistry, 177, 112433.

https://doi.org/10.1016/j.phytochem.2020.

AOCS. (1998). Official Methods And

Recommended Practices of The AOCS (6th

ed.). American Oil Chemist Society.

Bidjou-Haiour, C., & Klai, N. (2013). Lipase

catalyzed the synthesis of fatty acid xylose

esters and their surfactant properties.

Asian Journal of Chemistry,25(8), 4347-

https://doi.org/10.14233/ajchem.201

13973

Bouzaouit, N., & Bidjou-Haiour, C. (2016).

Response Surface Methodological Study of

Glucose Laurate Synthesis Catalyzed by

Immobilized Lipase from Candida

cylindracea. Biological Forum-An

International Journal, Vo.8(1), 420–427.

www.researchtrend.net

Claverie, V. et. al. (2004). United States Patent

About Method For Producing

Carbohydrate Partial Ester (Patent US

706.877.81).

Ferrer, M., Cruces, M. A., Plou, F. J., Pastor, E.,

Fuentes, G., Bernab6, M., Parra, J. L., &

Ballesteros, A. (2000). Chemical Versus

Enzymatic Catalysis for The Regioselective

Synthesis of Sucrose Esters of Fatty Acids.

Studies in Surface Science and Catalysis

Elsevier Science B.V. All Rights

Reserved., 509–514.

Fitremann, J., Queneau, Y., Maître, J. P., &

Bouchu, A. (2007). Co-melting of Solid

Sucrose and Multivalent Cation Soaps for

Solvent-free Synthesis of Sucrose Esters.

Tetrahedron Letters, 48(23), 4111-4114.

https://doi.org/10.1016/j.tetlet.2007.04.01

Godtfredsen, S. E. (1993a). Lipases. In Enzymes

in Food Processing (3th, pp. 205-219).

Academic Press Inc.

https://doi.org/10.1016/b978-0-08-

-4.50015-3

Gumel, A. M., Annuar, M. S. M., Heidelberg, T.,

& Chisti, Y. (2011). Lipase mediated

synthesis of sugar fatty acid esters. In

Process Biochemistry (Vol. 46, Issue 11,

pp. 2079–2090).

https://doi.org/10.1016/j.procbio.2011.07.

Habulin, M., Šabeder, S., & Knez, Ž. (2008).

Enzymatic synthesis of sugar fatty acid

esters in organic solvent and in

supercritical carbon dioxide and their

antimicrobial activity. Journal of

Supercritical Fluids, 45(3), 338–345.

https://doi.org/10.1016/j.supflu.2008.01.0

He, W. Sen, Cui, D. D., Zhang, Y. L., Liu, Y.,

Yin, J., Chen, G., Jia, C. S., & Feng, B.

(2017). Highly efficient synthesis of

phytosterol linoleate catalyzed by Candida

rugosa lipase through transesterification.

Food Science and Technology Research,

(4), 525–533.

https://doi.org/10.3136/fstr.23.525

Hidayat, H. (2015). Identifikasi Morfologi Dan

Uji Aktivitas Antimikroba Terhadap

Bakteri Escherichia Coli Dari Fermentasi

Buah Markisa (Passiflora Sp.). Jurnal

Eksakta, 15(1–2), 75–84.

https://doi.org/10.20885/eksakta.vol14.iss

-2.art8

Inprakhon, P., Wongthongdee, N.,

Amornsakchai, T., Pongtharankul, T.,

Sunintaboon, P., Wiemann, L. O., Durand,

A., & Sieber, V. (2017). Lipase-catalyzed

synthesis of sucrose monoester: Increased

productivity by combining enzyme

pretreatment and non-aqueous biphasic

medium. Journal of Biotechnology, 259,

–190.

https://doi.org/10.1016/j.jbiotec.2017.07.0

Iriawan, Nur dan Astuti, P. S. (2006). Mengolah

Data Statistik Dengan Mudah

Menggunakan Minitab 14 (O. H.

Sudiyarto, Ed.; Edisi 1). Andi Offsheet.

Jia, C., Zhao, J., Feng, B., Zhang, X., & Xia, W.

(2010). A simple approach for the selective

enzymatic synthesis of dilauroyl maltose in

organic media. Journal of Molecular

Catalysis B: Enzymatic, 62(3–4), 265–269.

https://doi.org/10.1016/j.molcatb.2009.11.

Khairunnida, G. R., Rusmini, H., Maharyuni, E.,

& Warganegara, E. (2020). Identifikasi

Escherichia coli Penyebab Waterborne

Disease pada Air Mimun Kemasan dan Air

Mimunm Isi Ulang. Jurnal Ilmiah

Kesehatan Sandi Husada, 12(2), 634–639.

https://doi.org/10.35816/jiskh.v12i2.370

Kurniasih, E., Rahmi, R., Darusman, D., &

Supardan, M. D. (2023). Synthesis of

sucrose ester through enzymatic

esterification and stability analysis as a

food emulsifier. E3S Web of Conferences,

, 1–9.

https://doi.org/10.1051/e3sconf/20233730

Lioe, H. N., & Fadhilah, A. (2020). Formulasi

Campuran Bahan Pengemulsi untuk Bolu

Sponge Mixed Emulsifier Formula in

Sponge Cake. 7(1), 7–13.

https://doi.org/10.29244/jmpi.2020.7.1.7

Manley, C., & Mayer, J. (2012). Lipase. Clinical

Veterinary Advisor: Birds and Exotic Pets,

–625. https://doi.org/10.1016/B978-1-

-3969-3.00364-4

Marathe, S. J., Shah, N. N., & Singhal, R. S.

(2020). Enzymatic synthesis of fatty acid

esters of trehalose: Process optimization,

characterization of the esters and

evaluation of their bioactivities.

Bioorganic Chemistry, 94.

https://doi.org/10.1016/j.bioorg.2019.1034

Marciello, M., Mateo, C., & Guisan, J. M.

(2011). Full enzymatic hydrolysis of

commercial sucrose laurate by

immobilized-stabilized derivatives of

lipase from Thermomyces lanuginosa.

Colloids and Surfaces B: Biointerfaces,

(2), 556–560.

https://doi.org/10.1016/j.colsurfb.2011.02.

Mitsubishi-Kagaku Food Corporation. (2022,

August 25). Various Applications Of Sugar

Esters To Foods.

https://Www.Mfc.Co.Jp/English/Infor.Ht

m.

Ortiz, C., Ferreira, M. L., Barbosa, O., Dos

Santos, J. C. S., Rodrigues, R. C.,

Berenguer-Murcia, Á., Briand, L. E., &

Fernandez-Lafuente, R. (2019). Novozym

: The “perfect” lipase immobilized

biocatalyst. Catalysis Science and

Technology, 9 (10), 2380–2420.

https://doi.org/10.1039/c9cy00415g

Pérez, B., Anankanbil, S., & Guo, Z. (2017).

Synthesis of Sugar Fatty Acid Esters and

Their Industrial Utilizations. In Fatty

Acids (pp. 329–354). Elsevier.

https://doi.org/10.1016/b978-0-12-809521-

00010-6

Ren, K., & Lamsal, B. P. (2017). Synthesis of

some glucose-fatty acid esters by lipase

from Candida antarctica and their

emulsion functions. Food Chemistry, 214,

–563.

https://doi.org/10.1016/j.foodchem.2016.0

031

Šabeder, S., Habulin, M., & Knez, Ž. (2006).

Lipase-catalyzed synthesis of fatty acid

fructose esters. Journal of Food

Engineering, 77(4), 880–886.

https://doi.org/10.1016/j.jfoodeng.2005.08

.016

Sari, D. M., Andarwulan, N., & Fardiaz, D.

(2019). Profil Komposisi BTP Campuran,

Pelabelan, dan Penggunaannya pada

Industri Rumah Tangga Pangan (IRTP) di

DKI Jakarta. Jurnal Mutu Pangan :

Indonesian Journal of Food Quality, 6(1),

–45.

https://doi.org/10.29244/jmpi.2019.6.38

PPKS. (2004). Intruksi Kerja Pengujian Fisika

Kimia Minyak. Pusat Penelitian Kelapa

Sawit, Medan

Shin, D. W., Mai, N. L., Bae, S. W., & Koo, Y.

M. (2019). Enhanced lipase-catalyzed

synthesis of sugar fatty acid esters using

supersaturated sugar solution in ionic

liquids. Enzyme and Microbial

Technology, 126, 18–23.

https://doi.org/10.1016/j.enzmictec.2019.0

004

Smidrkal, J., Cervenkova, R., & Filip, V. (2004).

Two-Stage Synthesis of Sorbitan Esters,

and Physical Properties of the Products.

European Journal of Lipid Science and

Technology, 106(12), 851–855.

https://doi.org/10.1002/ejlt.200401003

Sudrajat, S., Sadani, S., & Sudiastuti, S. (2012).

Analisis Fitokimia Senyawa Metabolit

Sekunder Ekstrak Kasar Etanol Daun

Meranti Merah (Shorea leprosula Miq.)

dan Sifat Antibakterinya terhadap

Staphylococcus aureus dan Eschericia

coli. Journal of Tropical Pharmacy and

Chemistry, 1(4), 303–311.

https://doi.org/10.25026/jtpc.v1i4.41.

Susanti, R., & Febriana, F. (2017). Buku Enzim

Lengkap. Penerbit Andi Offsheet

Teng, Y., Stewart, S. G., Hai, Y. W., Li, X.,

Banwell, M. G., & Lan, P. (2021). Sucrose

fatty acid esters: synthesis, emulsifying

capacities, biological activities, and

structure-property profiles. In Critical

Reviews in Food Science and Nutrition

(Vol. 61, Issue 19, pp. 3297–3317). Taylor

and Francis Ltd.

https://doi.org/10.1080/10408398.2020.17

Vijai Kumar Reddy, T., Sandhya Rani, G.,

Prasad, R. B. N., & Prabhavathi Devi, B. L.

A. (2015). Green recyclable SO3H-Carbon

Catalyst for The Selective Synthesis of

Isomannide-based Fatty Acid Monoesters

as Non-Ionic Bio-surfactants. RSC

Advances, 5(51), 40997–41005.

https://doi.org/10.1039/c5ra03605d

Wahyuni, S. (2017). Biokimia Enzim Dan

Karbohidrat. Universitas Malikul Saleh

Press.

Wulandari, A, dan Kurniasih, E. (2020). Potensi

Sukrosa Ester Nabati (SENA) Sebagai Anti

Mikroba Staphylococcus aureus dan

Escherichia Coli. Jurnal Teknik Dan

Teknologi Baristand, 15 (30).

Yu, J., Zhang, J., Zhao, A., & Ma, X. (2008).

Study of Glucose Ester Synthesis by

Immobilized Lipase From Candida sp.

Catalysis Communications, 9(6), 1369–

https://doi.org/10.1016/j.catcom.2007.11.0

Zeng, D., Cai, Y., Liu, T., Huang, L., Liu, P.,

Zhao, M., & Zhao, Q. (2021). Effect of

sucrose ester S370 on interfacial layers

and fat crystals network of whipped cream.

Food Hydrocolloids, 106541.

https://doi.org/10.1016/j.foodhyd.2020.10

Zhao, L., Zhang, H., Hao, T., & Li, S. (2015). In

vitro antibacterial activities and

mechanism of sugar fatty acid esters

against five food-related bacteria. Food

Chemistry, 187, 370–377.

https://doi.org/10.1016/j.foodchem.2015.0

108


Refbacks

  • There are currently no refbacks.


==============================================================================================================

Prosiding SEMNASTEK Fakultas Teknik
Universitas Muhammadiyah Jakarta
Jl. Cempaka Putih Tengah 27
Jakarta Pusat 10510
T. 021.4256024, 4244016 / F. 021.4256023

ISSN : 2407 – 1846
e-ISSN : 2460 – 8416

==============================================================================================================

Powered by Puskom-UMJ