Fabrication and simulation studies on sound absorption coefficient of natural microfibers reinforced silicone rubber

Afira Ainur Rosidah, Vuri Ayu Setyowati

Abstract


Silicone rubber (SR) is known as stable and able to get through an extreme environment. Moreover, the combination of SR and natural fiber as the composite for the sound absorption application is still limited. For this reason, this study was aimed to fabricate the natural fiber-reinforced porous SR for the sound absorption material. Then, the composites were simulated using multilinear regression method to predict the sound absorption coefficient and its factor influence. The composite fabrication was started with the alkalization of oil palm fiber treatment. Furthermore, the porous SR were prepared using NaCl filler to form the pores. Then, the specimen containing NaCl was soaked in warm water and all specimens were dried at 110 °C to remove the remaining water. The addition of fibers enhances the density value to the highest value of 1.061 g/cm3 with 6 wt% microfibers. The higher the microfiber addition led to the higher α value in low frequency, it occurred at SR/6 wt% microfibers with the α value of 0.356. Additionally, the most suitable equation with the smallest error is Equation 6 which has the RMSE and values of 0.05234 and 0.6138, respectively.


Keywords


silicone rubber; oil palm fiber; sound absorption; multilinear regression

Full Text:

PDF

References


S. Dalbehera and S. K. Acharya, “Study on mechanical properties of natural fiber reinforced woven jute-glass hybrid epoxy composites,” Adv. Polym. Sci. Technol., vol. 4, no. May, pp. 1–6, 2015.

M. De Fátima V. Marques, R. P. Melo, R. Da S. Araujo, J. Do N. Lunz, and V. De O. Aguiar, “Improvement of mechanical properties of natural fiber-polypropylene composites using successive alkaline treatments,” J. Appl. Polym. Sci., vol. 132, no. 12, pp. 1–12, 2015, doi: 10.1002/app.41710.

E. Sarikaya, H. Çallioğlu, and H. Demirel, “Production of epoxy composites reinforced by different natural fibers and their mechanical properties,” Compos. Part B Eng., vol. 167, no. 15, pp. 461–466, 2019, doi: 10.1016/j.compositesb.2019.03.020.

L. Peng, L. Lei, Y. Liu, and L. Du, “Improved mechanical and sound absorption properties of open cell silicone rubber foam with nacl as the pore-forming agent,” Materials (Basel)., vol. 14, no. 1, pp. 1–9, 2021, doi: 10.3390/ma14010195.

S. Schiavoni, F. D׳Alessandro, F. Bianchi, and F. Asdrubali, “Insulation materials for the building sector: A review and comparative analysis,” Renew. Sustain. Energy Rev., vol. 62, pp. 988–1011, 2016, doi: https://doi.org/10.1016/j.rser.2016.05.045.

Y. Huang, D. Zhou, Y. Xie, J. Yang, and J. Kong, “Tunable sound absorption of silicone rubber materials via mesoporous silica,” RSC Adv., vol. 4, no. 29, pp. 15171–15179, 2014, doi: 10.1039/c4ra00970c.

S. Mahzan, A. M. A. Zaidi, M. N. Yahya, and M. Ismail, “Investigation on Sound Absorption of Rice-Husk Reinforced Composite,” in MUCEET 2009, 2009, pp. 19–22.

E. Jayamani and S. Hamdan, “Sound Absorption Coefficients Natural Fibre Reinforced Composites Elammaran Jayamani,” vol. 701, pp. 53–58, 2013, doi: 10.4028/www.scientific.net/AMR.701.53.

Y. M. Kartikaratri, A. Subagio, and H. Widiyandari, “Pembuatan komposit serat serabut kelapa dan resin fenol formadehide sebagai material peredam akustik,” Berk. Fis., vol. 15, no. 3, pp. 87–90, 2012.

G. Iannace, G. Ciaburro, and A. Trematerra, “Modelling sound absorption properties of broom fibers using artificial neural networks,” Appl. Acoust., vol. 163, p. 107239, 2020, doi: 10.1016/j.apacoust.2020.107239.

M. K. bin Bakri, E. Jayamani, S. K. Heng, S. Hamdan, and A. Kakar, “An Experimental and Simulation Studies on Sound Absorption Coefficients of Banana Fibers and their Reinforced Composites,” Nano Hybrids Compos., vol. 12, pp. 9–20, 2016, doi: 10.4028/www.scientific.net/nhc.12.9.

H. Choe, G. Sung, and J. H. Kim, “Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams,” vol. 156, 2018, doi: 10.1016/j.compscitech.2017.12.024.

L. Ismail, M. I. Ghazali, S. Mahzan, A. Mujahid, and A. Zaidi, “Sound Absorption of Arenga Pinnata Natural Fiber,” World Acad. Sci. Eng. Technol., vol. 43, pp. 804–806, 2010.

M. Farid, A. Purniawan, D. Susanti, A. Rasyida, H. Yulianto, and M. Ramadani, “Effect of nanocellulose on acoustical and thermal insulation properties of silicone rubber composite,” Mater. Sci. Forum, vol. 964 MSF, pp. 156–160, 2019, doi: 10.4028/www.scientific.net/MSF.964.156.

R. Zulkifli et al., “Comparison of acoustic properties between coir fibre and oil palm fibre,” Eur. J. Sci. Res., vol. 33, pp. 144–152, Jan. 2009.

A. Kumar et al., “Development of Macroporous Silicone Rubber for Acoustic Applications,” Ind. Eng. Chem. Res., vol. 55, no. 32, pp. 8751–8760, 2016, doi: 10.1021/acs.iecr.6b02051.

S. Aprilia, S. Aprilia, R. Dungani, and P. Aditiawati, “Biomaterial from Oil Palm Waste : Properties , Properties , Characterization and Applications Rudi,” in Palm Oil, 2018, pp. 31–51.

L. A. Alrahman, R. I. Raja, R. A. Rahman, and Z. Ibrahim, “Comparison of Acoustic Characteristics of Date Palm Fibre and Oil Palm Fibre Department of System Dynamics , Faculty of Mechanical Engineering , Malaysian Palm Oil Board , Engineering and Processing Division , No 6 , Persiaran Institusi ,” Res. J. Appl. Sci. Eng. Technol., vol. 7, no. 8, pp. 1655–1660, 2014, doi: 10.19026/rjaset.7.445.

M. K. bin Bakri, E. Jayamani, S. Hamdan, M. R. Rahman, K. Soon, and A. Kakar, “Fundamental Study on The Effect of Alkaline Treatment on Natural Fibers Structures and Behaviors FUNDAMENTAL STUDY ON THE EFFECT OF ALKALINE TREATMENT,” ARPN J. Eng. Appl. Sci., vol. 11, no. July, pp. 8759–8763, 2016.

M. Rayung, N. A. Ibrahim, N. Zainuddin, and W. Z. Saad, “The Effect of Fiber Bleaching Treatment on the Properties of Poly ( lactic acid )/ Oil Palm Empty Fruit Bunch Fiber Composites,” pp. 14728–14742, 2014, doi: 10.3390/ijms150814728.

E. Abraham et al., “Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach,” Carbohydr. Polym., vol. 86, no. 4, pp. 1468–1475, 2011, doi: 10.1016/j.carbpol.2011.06.034.

K. Yoshimura, K. Nakano, and Y. Hishikawa, “Flexible tactile sensor materials based on carbon microcoil/silicone-rubber porous composites,” Compos. Sci. Technol., vol. 123, pp. 241–249, 2016, doi: 10.1016/j.compscitech.2015.12.018.

R. Xu et al., “Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction,” Biomaterials, vol. 40, pp. 1–11, 2015, doi: 10.1016/j.biomaterials.2014.10.077.

G. K. Uyanık and N. Güler, “A Study on Multiple Linear Regression Analysis,” in Procedia - Social and Behavioral Sciences, 2013, vol. 106, pp. 234–240, doi: 10.1016/j.sbspro.2013.12.027.

K. Diharjo, I. Elharomy, and A. Purwanto, “Pengaruh fraksi volume filler terhadap kekuatan bending dan ketangguhan impak komposit nanosilika – phenolic,” J. Rekayasa Mesin, vol. Vol. 5, no. 1, p. No. 1, hal. 27–32, 2014.

C. W. Shan, M. I. Idris, and M. I. Ghazali, “Study of Flexible Polyurethane Foams Reinforced with Coir Fibres and Tyre Particles,” Int. J. Appl. Phys. Math., vol. 2, no. 2, pp. 123–123, 2012, doi: 10.7763/ijapm.2012.v2.67.

S. Chen and Y. Jiang, “The acoustic property study of polyurethane foam with addition of bamboo leaves particles,” Polym. Compos., vol. 39, no. 4, pp. 1370–1381, 2018, doi: 10.1002/pc.24078.

A. Nandanwar, M. C. Kiran, and K. C. Varadarajulu, “Influence of Density on Sound Absorption Coefficient of Fibre Board,” Open J. Acoust., vol. 07, no. 01, pp. 1–9, 2017, doi: 10.4236/oja.2017.71001.




DOI: https://doi.org/10.24853/sintek.16.2.104-111

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin

Powered by Puskom-UMJ