Experimental Analysis of Climate Parameters Effect on Structural Steel Atmospheric Corrosion Rate in Medan City Environment

Iqbal Tanjung, Riadini Wanty Lubis, Zuli Agustina Gultom, Affandi Affandi, Chandra A Siregar, Syarizal Fonna

Abstract


This study aims to explore the important role of weather parameters i.e. humidity, rainfall, temperature, and wind speed on the corrosion rate in the Medan City atmospheric environment. Three forms of material with low carbon steel type were prepared in this investigation. The exploration process was conducted for six months starting from June to December 2023, in the open area of the Engineering Faculty, Universitas Muhammadiyah Sumatera Utara. Corrosion rate assessment is carried out monthly using the weight loss method and climate parameter data is obtained from the Medan City Meteorology and Geophysics Agency (BMKG). The dimensions, initial preparation, data collection, post-test material preparation, and corrosion rate calculations refer to the ASTM G1 and G50 standards. Regression analysis and Pearson correlation explain the relationship between corrosion rate and climate parameters. The investigation showed that the corrosion rate fluctuated monthly from 0.1 to 0.5 mpy. By referring to corrosion resistance data on metal materials, it was found that the corrosion level was in the good resistance category "outstanding". Based on the regression analysis results, humidity, local temperature, and rainfall play an important role in the atmospheric corrosion rate in Medan City. The percentage of closeness between variables is ± 98% and the standard deviation is ± 0.0001. Further development is needed to determine other parameters that also play an important role in atmospheric corrosion rate and forming a random forest model for predicting future corrosion rates.

Keywords


low carbon steel; atmospheric corrosion; corrosion rate; climate parameters; Medan City

Full Text:

PDF

References


S. K. Hasibuan, S. Sukardi, A. A. Tanjung, and I. Irsad, “Analysis of patterns of economic growth and transformation of economic sectors in Medan City, The Province North Sumatera in 2012–2021,” Riwayat Educ. J. Hist. Humanit., vol. 6, no. 2, pp. 393–404, 2023. DOI: https://doi.org/10.24815/jr.v6i2.29744.

F. Milanie, “Regional development of Medan City,” Int. J. Manag. Econ. Account., vol. 1, no. 2, pp. 166–174, 2023. DOI: https://doi.org/10.61306/ijmea.v1i2.23.

J. Alcántara, B. Chico, J. Simancas, I. Díaz, D. De la Fuente, and M. Morcillo, “An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres,” Mater. Charact., vol. 118, pp. 65–78, 2016. DOI: https://doi.org/10.1016/j.matchar.2016.04.027.

A. Castañeda, C. Valdés, and F. Corvo, “Atmospheric corrosion study in a harbor located in a tropical island,” Mater. Corros., vol. 69, no. 10, pp. 1462–1477, 2018. DOI: https://doi.org/10.1002/maco.201810161.

W. Thandar, Y. Y. K. Win, T. Khaing, Y. Suzuki, K. Sugiura, and I. Nishizaki, “Investigation of initial atmospheric corrosion of carbon and weathering steels exposed to urban atmospheres in Myanmar,” Int. J. Corros., vol. 2022, no. 1, p. 4301767, 2022. DOI: https://doi.org/10.1155/2022/4301767.

G. Koch, “Cost of corrosion,” in Trends Oil Gas Corros. Res. Technol., pp. 3–30, 2017. DOI: https://doi.org/10.1016/B978-0-08-101105-8.00001-2.

S. D. Cramer, B. S. Covino, and C. Moosbrugger, Corrosion: Fundamentals, Testing and Protection, vol. 13. ASM International, Materials Park, 2003. DOI: https://doi.org/10.31399/asm.hb.v13a.9781627081825.

K. Popova and T. Prošek, “Corrosion monitoring in atmospheric conditions: A review,” Metals (Basel)., vol. 12, no. 2, p. 171, 2022. DOI: https://doi.org/10.3390/met12020171.

Y. Cai, Y. Xu, Y. Zhao, and X. Ma, “Atmospheric corrosion prediction: A review,” Corros. Rev., vol. 38, no. 4, pp. 299–321, 2020. DOI: https://doi.org/10.1515/corrrev-2019-0100.

K. Ummah, A. A. Muslim, and I. Sukmana, “Atmospheric corrosion of galvanized low-carbon steel at rural, city, and industrial area in Bandar Lampung,” J. Energi dan Manufaktur, vol. 9, no. 1, pp. 109–113, 2016.

H. Simillion, O. Dolgikh, H. Terryn, and J. Deconinck, “Atmospheric corrosion modeling,” Corros. Rev., vol. 32, no. 3–4, pp. 73–100, 2014. DOI: https://doi.org/10.1515/corrrev-2014-0023.

R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses, vol. 664. Wiley-VCH, Weinheim, 2003. DOI: https://doi.org/10.1002/3527602097.

M. Morcillo, B. Chico, J. Alcántara, I. Díaz, R. Wolthuis, and D. De la Fuente, “SEM/Micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel,” J. Electrochem. Soc., vol. 163, no. 8, p. C426, 2016. DOI: https://doi.org/10.1149/2.0411608jes.

L. Di Sarno, A. Majidian, and G. Karagiannakis, “The effect of atmospheric corrosion on steel structures: A state-of-the-art and case-study,” Buildings, vol. 11, no. 12, p. 571, 2021. DOI: https://doi.org/10.3390/buildings11120571.

A. Raman, A. Razvan, B. Kuban, K. A. Clement, and W. E. Graves, “Characteristics of the rust from weathering steels in Louisiana bridge spans,” Corrosion, vol. 42, no. 8, pp. 447–455, 1986. DOI: https://doi.org/10.5006/1.3583050.

B. Y. R. Surnam, “Three years outdoor exposure of low carbon steel in Mauritius,” Anti-Corrosion Methods Mater., vol. 62, no. 4, pp. 246–252, 2015. DOI: https://doi.org/10.1108/ACMM-12-2013-1328.

D. De la Fuente, J. Alcántara, B. Chico, I. Díaz, J. A. Jiménez, and M. Morcillo, “Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques,” Corros. Sci., vol. 110, pp. 253–264, 2016. DOI: https://doi.org/10.1016/j.corsci.2016.04.034.

S. Huzni, I. Tanjung, and S. Fonna, “Atmospheric corrosion map of structural steel in industrial area: A preliminary investigation,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, p. 12075. DOI: https://doi.org/10.1088/1757-899X/602/1/012075.

A. Affandi et al., “Atmospheric corrosion analysis on low carbon steel plate profile and elbow in Medan Belawan District,” Key Eng. Mater., vol. 892, pp. 142–149, 2021. DOI: https://doi.org/10.4028/www.scientific.net/KEM.892.142.

N. S. Palsson, K. Wongpinkaew, P. Khamsuk, S. Sorachot, and W. Pongsaksawad, “Outdoor atmospheric corrosion of carbon steel and weathering steel exposed to the tropical‐coastal climate of Thailand,” Mater. Corros., vol. 71, no. 6, pp. 1019–1034, 2020. DOI: https://doi.org/10.1002/maco.201911340.

ASTM G 50-76, “Standard practice for conducting atmospheric corrosion test on metals,” Annu. B. ASTM Stand., ASTM Int., Pennsylvania, 2003.

D. D. N. Singh and A. Kumar, “A fresh look at ASTM G 1-90 solution recommended for cleaning of corrosion products formed on iron and steels,” Corrosion, vol. 59, no. 11, pp. 1029–1036, 2003. DOI: https://doi.org/10.5006/1.3277521.

P. R. Roberge, Handbook of corrosion engineering, vol. 1128. McGraw-Hill, New York, 2000.

M. Ridha, S. Fonna, S. Huzni, J. M. Israr, and A. K. Ariffin, “Atmospheric corrosion of carbon steel in tsunami affected area of Banda Aceh and Aceh Besar District after six months exposure,” in Seminar Nasional Tahunan Teknik Mesin X (SNTTM X), 2011.

Y. Seechurn, B. Y. R. Surnam, and J. A. Wharton, “Marine atmospheric corrosion of carbon steel in the tropical microclimate of Port Louis,” Mater. Corros., vol. 73, no. 9, pp. 1474–1489, 2022. DOI: https://doi.org/10.1002/maco.202112871.

C. Martínez, F. Briones, M. Villarroel, and R. Vera, “Effect of atmospheric corrosion on the mechanical properties of 1020 structural steel,” Materials (Basel), vol. 11, no. 4, p. 591, 2018. DOI: https://doi.org/10.3390/ma11040591.

S. Fonna, I. B. M. Ibrahim, S. Huzni, M. Ikhsan, and S. Thalib, “Investigation of corrosion products formed on the surface of carbon steel exposed in Banda Aceh’s atmosphere,” Heliyon, vol. 7, no. 4, 2021. DOI: https://doi.org/10.1016/j.heliyon.2021.e06608.

C. Leygraf, I. O. Wallinder, J. Tidblad, and T. Graedel, “Appendix I: The atmospheric corrosion chemistry of silver,” John Wiley Sons, Inc., Hoboken, NJ, USA, pp. 337–347, 2016. DOI: https://doi.org/10.1002/9781118762134.




DOI: https://doi.org/10.24853/sintek.18.2.135-143

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin

Powered by Puskom-UMJ