The Effect of Variation in Electrode Type and Area on Electrical Productivity of MFC With Sago Stem Substrate

Muhammad Nizar Ramadhan, Rizal Hamdani

Abstract


Microbial Fuel Cells (MFC) offer a promising solution for developing efficient and environmentally friendly alternative energy sources. MFCs convert chemical energy into electrical energy through anaerobic reactors equipped with anode and cathode electrodes containing substrates and microbes. This study investigates the effect of electrode type and area on the production of current, voltage, and power density using sago stem substrates in an MFC system enhanced with Lactobacillus plantarum. These bacteria play a critical role in facilitating electrolysis, thereby increasing electrical energy output. A dual-chamber MFC design was employed, testing electrode materials (copper, aluminum, nickel, and graphite carbon) and areas (30 cm², 40 cm², and 60 cm²). Measurements of current, voltage, and power density were taken over 36 hours. Results indicate that electrode area significantly influences voltage and current, while electrode type determines power density. The highest average power density, 432.953 mW/m², was achieved using nickel electrodes with a 30 cm² surface area. These findings underscore the importance of optimizing electrode properties to enhance the performance of MFCs.

Keywords


MFC; sago stem substrate; electrode type; power density

Full Text:

PDF

References


M. Novriandy, M. Tamjidillah, N. Ramadhan, P. Studi, and T. Mesin, “Pengaruh Mikroorganisme Terhadap Produktivitas Energi Listrik MFC dengan Variasi Limbah Pabrik Tahu dan Limbah Perikanan,” Rotasi, vol. 3, 2021. [Online]. Available: https://ppjp.ulm.ac.id/journals/index.php/rot

S. B. Ardi, “Pemanfaatan Sistem Microbial Fuel Cell (MFC) Menggunakan Bakteri Lactobacillus Plantarum Dengan Substrat Batang Sagu (Metroxylon),” Undergraduate thesis, Universitas Islam Negeri Alauddin Makassar, 2020.

X. A. Walter, E. Madrid, I. Gajda, J. Greenman, and I. Ieropoulos, “Microbial Fuel Cell Scale-up Options: Performance Evaluation of Membrane (c-MFC) and Membrane-less (s-MFC) Systems Under Different Feeding Regimes,” J. Power Sources, vol. 520, 2022. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2021.230875

S. K. Khanal, Anaerobic Biotechnology for Bioenergy Production: Principles and Applications. Wiley-Blackwell, 2008.

A. J. Slate, K. A. Whitehead, D. A. C. Brownson, and C. E. Banks, “Microbial Fuel Cells: An Overview of Current Technology,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 60–81, 2019. [Online]. Available: https://doi.org/10.1016/j.rser.2018.09.044

F. Borja-Maldonado and M. Á. López Zavala, “Contribution of Configurations, Electrode and Membrane Materials, Electron Transfer Mechanisms, and Cost of Components on the Current and Future Development of Microbial Fuel Cells,” Heliyon, vol. 8, no. 7, 2022. [Online]. Available: https://doi.org/10.1016/j.heliyon.2022.e09849

U. Kumari, R. Shankar, and P. Mondal, “Electrodes for Microbial Fuel Cells,” Progress and Recent Trends in Microbial Fuel Cells, pp. 125–141, 2018. [Online]. Available: https://doi.org/10.1016/B978-0-444-64017-8.00008-7

A. Mukimin and H. Vistanty, “Low Carbon Development Based on Microbial Fuel Cells as Electrical Generation and Wastewater Treatment Unit,” Renewable Energy Focus, vol. 44, pp. 132–138, 2023. [Online]. Available: https://doi.org/10.1016/j.ref.2022.12.005

M. I. Ramadhani and A. M. Mursadin, “Pengaruh Variasi Elektroda Tembaga dan Seng Terhadap Produktivitas Listrik Microbial Fuel Cell (MFC) Pada Substrat Limbah Cair Air Rebusan Mie Instan,” Scientific J. Mech. Eng. Kinematika, vol. 5, no. 1, pp. 23–36, 2020. [Online]. Available: https://doi.org/10.20527/sjmekinematika.v5i1.135

M. Ainun and L. Suyati, “Bioelectricity of Various Carbon Sources on Series Circuit from Microbial Fuel Cell System Using Lactobacillus plantarum,” J. Kim. Sains & Aplikasi, vol. 4, pp. 70–74, 2018.

A. A. Yaqoob, M. N. M. Ibrahim, M. Rafatullah, Y. S. Chua, A. Ahmad, and K. Umar, “Recent Advances in Anodes for Microbial Fuel Cells: An Overview,” Materials, vol. 13, no. 9, 2020. [Online]. Available: https://doi.org/10.3390/ma13092078

N. Rahmah, M. R. Kirom, and A. Riu, “Analisis Pengaruh Panjang Jembatan Garam Terhadap Produksi Listrik Pada Dual Chambar MFC,” E-Proceeding Eng., vol. 7, pp. 9247–9254, 2020.

R. Widiana, “Pemanfaatan Batang Pisang Sebagai Substrat Dalam Teknologi Microbial Fuel Cell (MFC) Menggunakan Lactobacillus Plantarum,” Undergraduate thesis, Universitas Islam Negeri Alauddin Makassar, 2020.

Kementan RI, Statistik Perkebunan Unggulan Nasional 2020-2022. Direktorat Jendral Perkebunan Kementrian Republik Indonesia, 2022.

Rahmaniah, S. B. Ardi, and N. Fuadi, “Aplikasi Teknologi Microbial Fuel Cell (MFC) Untuk Menentukan Energi Listrik Substrat Batang Sagu (Metroxylon),” J. Teknosains, vol. 14, no. 2, pp. 172–175, 2020.

M. A. Fitri, “Pengaruh Variasi Elektrode dan Substrat Limbah Buah Terhadap Power Density pada Microbial Fuel Cell dari Air Gambut,” Undergraduate thesis, Universitas Lambung Mangkurat, 2022.

B. Ibrahim, P. Suptijah, and S. Rosmalawati, “Kinerja Rangkaian Seri Sistem Microbial Fuel Cell Sebagai Penghasil Biolistrik Dari Limbah Cair Perikanan,” JPHPI, vol. 17, 2014.

U. Sholikah, N. Alfian, M. Kamaluddin, and A. Prasetyo, “Sumber Energi Alternatif Rumput Vetiver Dengan Metode Plant Microbial Fuel Cell,” in Proc. SNRT Politeknik Negeri Banjarmasin, 2019.

D. H. Sinaga, L. Sayuti, and A. L. N. Aminin, “Studi Pendahuluan Pemanfaatan Whey Tahu sebagai Substrat dan Efek Luas Permukaan Elektroda dalam Sistem Microbial Fuel Cell,” J. Sains Dan Matematika, vol. 22, pp. 30–35, 2014.

A. M. Helmenstine, “Table of Electrical Resistivity and Conductivity,” ThoughtCo., June 2019. [Online]. Available: https://www.thoughtco.com/table-of-electrical-resistivity-conductivity-608499




DOI: https://doi.org/10.24853/sintek.18.2.144-154

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin

Powered by Puskom-UMJ