Material Selection for Fatigue Resistance in Coal Screening Systems: Finite Element Analysis of HB400 and GS20Mn5 at PT Bukit Asam Tarahan Port

Main Article Content

Kiagus A Hadi
Anung Suwito

Abstract

Fatigue failure due to impact loads on the CV507 screen coal flow breaker plate has caused operational constraints that hamper coal production at PT. Bukit Asam – Tarahan Harbor. This research aims to determine the optimal material selection for coal flow breaker plates to achieve superior fatigue life and operational safety. HB400 material was selected for its high hardness and wear resistance, suitable for applications experiencing friction and direct coal impact. GS20Mn5 was chosen for its high toughness and superior impact energy absorption capabilities without cracking, particularly under repeated impact loading conditions. Two materials, Hardock (HB400) and GS20Mn5, with thicknesses of 15 mm and 20 mm respectively, were analyzed using static structural and explicit dynamic analysis in ANSYS Workbench 2022 R1 software. Simulation results indicate that the maximum operational impact load is 15.2 kN. The highest maximum Von Mises stress occurred in the Hardock (HB400) material with 15 mm thickness at 2348.3 MPa, with total deformation of 12.139 mm. Increasing thickness by 5 mm in the Hardock (HB400) material reduced stress and total deformation to 1543.3 MPa and 11.476 mm, respectively. GS20Mn5 material with 20 mm thickness demonstrated the longest fatigue life of 8 months compared to Hardock (HB400). This research provides material selection guidelines for coal flow breaker plates, offering significant value for engineering applications and the mining industry.

Article Details

How to Cite
[1]
K. A. Hadi and A. Suwito, “Material Selection for Fatigue Resistance in Coal Screening Systems: Finite Element Analysis of HB400 and GS20Mn5 at PT Bukit Asam Tarahan Port”, sintek. jurnal. ilm. teknik. mesin, vol. 19, no. 1, pp. 25–41, Jun. 2025.
Section
Articles

References

A. P. Afin and B. F. T. Kiono, "Potensi energi batubara serta pemanfaatan dan teknologinya di Indonesia tahun 2020 - 2050: Gasifikasi batubara," J. Energi Baru Dan Terbarukan, vol. 2, no. 2, pp. 114–122, 2021, doi: 10.14710/jebt.2021.11429.

M. J. Cherukara and H. K. Yeddu, "Finite element analysis of F1 car chassis under impact loading," in Proc. Struct. Integr., vol. 42, 2022, pp. 1234–1241. doi: 10.1016/j.prostr.2022.12.156.

M. M. Yusnayadi, B. Hartono, U. Ibn, and K. Bogor, "Analisa uji impact chassis gokart berbasis kecepatan," J. AlMikanika, vol. 1, no. 4, 2019, doi: 10.32832/almikanika.v1i4.5194.

A. P. Maulana, "Analisis fatigue menggunakan Autodesk inventor," J. Tek. Mesin Produksi, vol. 3, no. 1, pp. 17–22, 2022.

G. Singh, "A review on effect of heat treatment on the properties of mild steel," Mater. Today Proc., vol. 26, pp. 1–3, 2020, doi: 10.1016/j.matpr.2020.07.702.

M. Jia, P. Hu, X. Zhang, and G. Hu, "Rust conversion of proanthocyanidins to archaeological steel: A case study of Lingzhao Xuan in the Forbidden City," Molecules, vol. 27, no. 22, p. 7711, 2022, doi: 10.3390/molecules27227711.

B. G. Tentua, "Analisa kelelahan velg racing Toyota Avansa dengan menggunakan metode element hingga," J. Arika, vol. 9, no. 1, pp. 63–69, 2015, [Online]. Available: https://ojs3.unpatti.ac.id/index.php/arika/article/view/415

W. P. Spence and E. Kultermann, Construction Materials, Methods and Techniques, 4th ed. Boston, MA, USA: Cengage Learning, 2016.

P. Krawczyk and A. Śliwińska, "Analysis of the impact of material properties on the wear rate of mining machinery components," Arch. Min. Sci., vol. 65, no. 2, pp. 345–358, 2020, doi: 10.24425/ams.2020.134141.

A. Chmiela, "The analysis of the structure of mining plants liquidation outlays," Eur. J. Bus. Manag. Res., vol. 8, no. 3, pp. 204–214, 2023, doi: 10.24018/ejbmr.2023.8.3.1946.

R. Juniah, "Study of carbon value of the allotment of former coal mining land of PT Samantaka Batubara for sustainable mining environment," J. Sustain. Dev., vol. 11, no. 4, p. 213, 2018, doi: 10.5539/jsd.v11n4p213.

A. Chmiela, J. Smoliło, and M. Gajdzik, "A multifaceted method of analyzing the amount of expenditures on mine liquidation processes in SRK S.A.," Manag. Syst. Prod. Eng., vol. 30, no. 2, pp. 130–139, 2022, doi: 10.2478/mspe-2022-0016.

M. A. P. Pratama, M. I. P. Hidayat, and R. Rochiem, "Analisa pengaruh ukuran partikel terhadap patahan gritcone pada vertical roller mill dengan simulasi explicit dynamic (Ls-Dyna)," J. Tek. ITS, vol. 6, no. 1, pp. F70–F75, 2017, doi: 10.12962/j23373539.v6i1.22907.

D. Y. Kosasih, W. Anggono, and F. D. Suprianto, "Optimasi desain pelek mobil melalui simulasi pengujian impact sesuai standar SAE J175," J. Meednnovah, vol. 4, pp. 1–5, 2015.

M. Nofri, "Analisis ketangguhan antara baja ST 37 dan ST 42 dengan ketebalan dan variasi lapisan karbon fiber untuk kerangka mobil listrik," J. Presisi, pp. 56–65, 2019.

Y. Wang, Q. Han, and J. Yue, "Pore morphology changes and quantitative analysis and evaluation of high-rank coal samples after impact," Energy Sci. Eng., vol. 12, no. 6, pp. 2519–2534, 2024, doi: 10.1002/ese3.1760.

Z. Wang et al., "Research on the dynamic tensile characteristics and surface crack evolution of coal under impact loading," Sci. Rep., vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-64342-8.

S. Jiang et al., "Study on the microstructure and mechanical properties of martensitic wear-resistant steel," Crystals, vol. 13, no. 8, p. 1210, 2023, doi: 10.3390/cryst13081210.

R. G. Budynas and J. K. Nisbett, Shigley's Mechanical Engineering Design, 10th ed. New York, NY, USA: McGraw-Hill, 2015.

D. Chandra, U. Budiarto, and H. E. Yudo, "Analisa teknis kekuatan dan perbandingan biaya material poros baling-baling kapal nelayan daerah Batang dengan menggunakan metode element hingga," J. Tek. Perkapalan, vol. 9, no. 4, pp. 334–342, 2021.

S. Forth, J. C. Newman, and R. G. Forman, "Anomalous fatigue crack growth data generated using the ASTM standards," J. ASTM Int., vol. 3, no. 3, Mar. 2006, doi: 10.1520/JAI13180.

F. Rohman, D. Mardiyana, F. Ridha, and S. K. Damodar, "Structural analysis of waste separation machine frame using FEA method," Int. J. Eng. Appl. Technol., vol. 6, no. 1, pp. 10–17, 2023, doi: 10.52005/ijeat.v6i1.80.

X. Liu et al., "Comparison between novel anatomical locking guide plate and conventional locking plate for acetabular fractures: A finite element analysis," Life, vol. 13, no. 11, p. 2108, 2023, doi: 10.3390/life13112108.

B. Sulaeman, "Modulus elastisitas berbagai jenis material," PENA Tek. J. Ilm. Ilmu-Ilmu Tek., vol. 3, no. 2, p. 127, 2018, doi: 10.51557/pt_ijit.v3i2.176.

H. Hao, T. T. Tran, H. Li, T. M. Pham, and W. Chen, "On the accuracy, reliability and controllability of impact tests of RC beams," Int. J. Impact Eng., vol. 157, p. 103979, 2021, doi: 10.1016/j.ijimpeng.2021.103979.

J. P. I. Kiswara, S. H. Suryo, and Muchammad, "Analisis kekuatan bucket dan gaya statis pada bucket backhoe John Deere 310I terhadap variasi material," J. Tek. Mesin S-1, vol. 11, no. 1, pp. 118–125, 2023, [Online]. Available: https://ejournal3.undip.ac.id/index.php/jtm.

I. G. Kristanto, N. Mulyaningsih, and F. Hilmy, "Simulasi struktur rangka mesin pencacah sabut kelapa menggunakan software ANSYS Workbench," in Seminar Nasional Teknik Mesin, 2023, pp. 123–130.

R. Effendi, R. Pratama, M. Qadri, and A. Y. Nasution, "Analysis of the frame design of cracker sheet printing and cutting machine using finite element method simulation," J. Dinamis, vol. 12, no. 1, pp. 7-13, 2024, doi: 10.32734/dinamis.v12i1.16359.

B. Bickel et al., "Design and fabrication of materials with desired deformation behavior," ACM Trans. Graph., vol. 29, no. 4, pp. 1–10, 2010, doi: 10.1145/1778765.1778800.

E. Febriyanti, A. G. Abdul, and H. A. Suhartono, "Analisa kegagalan track link excavator," Maj. Ilm. Pengkaj. Ind., vol. 12, no. 3, pp. 181–190, 2023, doi: 10.29122/mipi.v12i3.2886.

J. Zghal, H. Gmati, C. Marcau, and F. Morel, "A crystal plasticity based approach for the modelling of high cycle fatigue damage in metallic materials," Int. J. Damage Mech., vol. 25, no. 5, pp. 611–628, 2016, doi: 10.1177/1056789516650247.

V. Igwemezie, A. Mehmanparast, and F. Brennan, "The influence of microstructure on the fatigue crack growth rate in marine steels in the Paris region," Fatigue Fract. Eng. Mater. Struct., vol. 43, no. 10, pp. 2416–2440, 2020, doi: 10.1111/ffe.13312.

X. Liu, Q. Wu, S. Su, and Y. Wang, "Evaluation and prediction of material fatigue characteristics under impact loads: review and prospects," Int. J. Struct. Integr., vol. 13, no. 2, pp. 251–277, 2022, doi: 10.1108/IJSI-10-2021-0112.

A. Yadollahi, M. Mahmoudi, A. Elwany, H. Doude, L. Bian, and J. C. Newman, "Fatigue-life prediction of additively manufactured material: Effects of heat treatment and build orientation," Fatigue Fract. Eng. Mater. Struct., vol. 43, no. 4, pp. 831–844, 2020, doi: 10.1111/ffe.13200.

D. L. McDowell and F. P. Dunne, "Microstructure-sensitive computational modeling of fatigue crack formation," Int. J. Fatigue, vol. 32, no. 9, pp. 1521–1542, 2010, doi: 10.1016/j.ijfatigue.2010.01.003.