Analisis Parameter Fisikokimia dan Bakteriologi Sungai Cikambuy Kabupaten Serang, Banten, Indonesia

Nurce Arifiati, Fauzul Hayat, Andriyani Andriyani, Rita Ramayulis

Abstract


Penurunan kualitas air sungai Cikambuy akibat limbah aktivitas domestik dan kawasan industri Cikande dapat membahayakan lingkungan perairan dan kesehatan masyarakat. Penelitian ini bertujuan untuk mengetahui kualitas fisikokimia dan bakteriologis sungai cikambuy Kabupaten Serang. Pengambilan sampel air dilakukan satu kali yaitu pada musim hujan pada bulan Maret 2021. Penentuan lokasi pengambilan sampel menggunakan metode purposive sampling. Pemilihan bulan dalam setahun adalah untuk menguji pengaruh musim hujan terhadap status kualitas air. Analisis air dari PT. Laboratorium Unilab Perdana dibandingkan hasilnya dengan standar kualitas air nasional. Hasil analisis parameter fisikokimia sebagai berikut: suhu (28,4ºC), TDS (288 mg/L), TSS (99 mg/L), pH (7,2), BOD (18 mg/L), COD (27 mg/L), DO (7,8 mg/L), Nitrat (2,33 mg/L), Nitrit (0,138 mg/L), Zn (0,378 mg/L), Fenol (0,081 mg/L). Kadar bakteriologis seperti Fecal coliform terdeteksi dalam jumlah (340.000 MPN/100 ml), dan total coliform (620.000 MPN/100 ml). Hasil penelitian menunjukkan bahwa sebagian besar parameter fisikokimia dan bakteriologis yang diselidiki melebihi batas yang direkomendasikan oleh Peraturan Pemerintah Indonesia No.22/2021 (kelas II). Diperlukan strategi perencanaan pengolahan air limbah dan peningkatan peran pemerintah, Kawasan Industri Cikande, dan masyarakat guna menjaga ekosistem sungai berkelanjutan.

Keywords


fisikokimia, bakteriologi, sungai cikambuy

Full Text:

PDF

References


Tanjung RHR, Yonas MN, Maury HK, Sarungu Y, Hamuna B. Analysis of Surface Water Quality of Four Rivers in Jayapura Regency, Indonesia: CCME-WQI Approach. J Ecol Eng. 2022;23(1).

Wikurendra EA, Syafiuddin A, Nurika G, Elisanti AD. Water quality analysis of pucang river, sidoarjo regency to control water pollution. Environ Qual Manag. 2022;32(1):133–44.

Astia Simantri A. ANALISIS MUTU AIR SUNGAI CIUJUNG MENGGUNAKAN METODE STORET DAN INDEKS PENCEMARAN. Universitas Sahid Jakarta; 2022.

Zhu S, Nyarko EK, Hadzima-Nyarko M, Heddam S, Wu S. Assessing the performance of a suite of machine learning models for daily river water temperature prediction. PeerJ. 2019;7:e7065.

Fanela MAP, Takarina ND. Distribution of total suspended solids (TSS) and chlorophyll-a in Kendari Bay, Southeast Sulawesi. In: Journal of Physics: Conference Series. IOP Publishing; 2019. p. 12150.

Igwegbe CA, Onukwuli OD. Removal of total dissolved solids (TDS) from aquaculture wastewater by coagulation-flocculation process using Sesamum indicum extract: effect of operating parameters and coagulation-flocculation kinetics. Pharm Chem J. 2019;6(4):32–45.

Ritambhara, Zainab, Vijayaraghavalu S, Prasad HK, Kumar M. Treatment and Recycling of wastewater from dairy industry. Adv Biol Treat Ind Waste Water their Recycl a Sustain Futur. 2019;91–115.

Kabir H, Zhu H, Lopez R, Nicholas NW, McIlroy DN, Echeverria E, et al. Electrochemical determination of chemical oxygen demand on functionalized pseudo-graphite electrode. J Electroanal Chem. 2019;851:113448.

Osaka K, Yokoyama R, Ishibashi T, Goto N. Effect of dissolved oxygen on nitrogen and phosphorus fluxes from lake sediments and their thresholds based on incubation using a simple and stable dissolved oxygen control method. Limnol Oceanogr Methods. 2022;20(1):1–14.

Lin K, Zhu Y, Zhang Y, Lin H. Determination of ammonia nitrogen in natural waters: Recent advances and applications. Trends Environ Anal Chem. 2019;24:e00073.

Lin J, Böhlke JK, Huang S, Gonzalez-Meler M, Sturchio NC. Seasonality of nitrate sources and isotopic composition in the Upper Illinois River. J Hydrol. 2019;568:849–61.

Maurya PK, Malik DS, Yadav KK, Kumar A, Kumar S, Kamyab H. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicol reports. 2019;6:472–81.

Soleimani H, Mansouri B, Kiani A, Omer AK, Tazik M, Ebrahimzadeh G, et al. Ecological risk assessment and heavy metals accumulation in agriculture soils irrigated with treated wastewater effluent, river water, and well water combined with chemical fertilizers. Heliyon. 2023;9(3).

Li H, Meng F, Duan W, Lin Y, Zheng Y. Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicol Environ Saf. 2019;184:109658.

Arfin T, Sonawane K, Tarannum A. Review on detection of phenol in water. Adv Mater Lett. 2019;10(11):753–85.

Kongprajug A, Chyerochana N, Somnark P, Kampaengthong PL, Mongkolsuk S, Sirikanchana K. Human and animal microbial source tracking in a tropical river with multiple land use activities. Int J Hyg Environ Health. 2019;222(4):645–54.

Hasan MK, Shahriar A, Jim KU. Water pollution in Bangladesh and its impact on public health. Heliyon. 2019;5(8):e02145.

Kumar P, Srivastava S, Banerjee A, Banerjee S. Prevalence and predictors of water-borne diseases among elderly people in India: evidence from Longitudinal Ageing Study in India, 2017–18. BMC Public Health. 2022;22(1):993.

Badan Pusat Statistik Serang. Kota Serang Dalam Angka 2021. Kota Serang Dalam Angka. 2021;260.

Meyer AM, Klein C, Fünfrocken E, Kautenburger R, Beck HP. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers. Sci Total Environ. 2019;651:2323–33.

Marselina M, Wibowo F, Mushfiroh A. Water quality index assessment methods for surface water: A case study of the Citarum River in Indonesia. Heliyon. 2022;8(7).

Morales-Marín LA, Rokaya P, Sanyal PR, Sereda J, Lindenschmidt KE. Changes in streamflow and water temperature affect fish habitat in the Athabasca River basin in the context of climate change. Ecol Modell. 2019;407:108718.

Graf R, Wrzesiński D. Relationship between water temperature of Polish rivers and large-scale atmospheric circulation. Water. 2019;11(8):1690.

Zhang H, Kang M, Wu J, Wang C, Li J, Du H, et al. Increasing river temperature shifts impact the Yangtze ecosystem: Evidence from the endangered Chinese sturgeon. Animals. 2019;9(8):583.

Andrianto R, Perwira IY, Negara IKW. Analisa Kualitas Air di Sungai Pelus, Purbalingga, Jawa Tengah. Curr Trends Aquat Sci. 2021;4(1):76–81.

Setianto H, Fahritsani H. Faktor determinan yang berpengaruh terhadap pencemaran sungai musi kota Palembang. Media Komun Geogr. 2019;20(2):186–98.

Abdul Maulud KN, Fitri A, Wan Mohtar WHM, Wan Mohd Jaafar WS, Zuhairi NZ, Kamarudin MKA. A study of spatial and water quality index during dry and rainy seasons at Kelantan River Basin, Peninsular Malaysia. Arab J Geosci. 2021;14:1–19.

Schumann M, Brinker A. Understanding and managing suspended solids in intensive salmonid aquaculture: a review. Rev Aquac. 2020;12(4):2109–39.

Daroini TA, Arisandi A. Analisis BOD (Biological Oxygen Demand) Di Perairan Desa Prancak Kecamatan Sepulu, Bangkalan. Juv J Ilm Kelaut dan Perikan. 2020;1(4):558–66.

Purnama V. Analisis Kadar Bod (Biological Oxygen Demand) Dan Cod (Chemical Oxygen Demand) Pada Air Sungai Batang Masumai Kabupaten Merangin Di Uptd Laboratorium Dinas Lingkungan Hidup Kabupaten Merangin. Indones J Chem Res. 2022;36–43.

Vigiak O, Grizzetti B, Udias-Moinelo A, Zanni M, Dorati C, Bouraoui F, et al. Predicting biochemical oxygen demand in European freshwater bodies. Sci Total Environ. 2019;666:1089–105.

Cazaudehore G, Schraauwers B, Peyrelasse C, Lagnet C, Monlau F. Determination of chemical oxygen demand of agricultural wastes by combining acid hydrolysis and commercial COD kit analysis. J Environ Manage. 2019;250:109464.

Prambudy H, Supriyatin T, Setiawan F. The testing of chemical oxygen demand (COD) and biological oxygen demand (BOD) of river water in Cipager Cirebon. In: Journal of Physics: Conference Series. IOP Publishing; 2019. p. 12010.

Xu J, Jin G, Mo Y, Tang H, Li L. Assessing anthropogenic impacts on chemical and biochemical oxygen demand in different spatial scales with bayesian networks. Water. 2020;12(1):246.

Rajesh M, Rehana S. Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Sci Rep. 2022;12(1):9222.

Espinosa-Díaz LF, Zapata-Rey Y-T, Ibarra-Gutierrez K, Bernal CA. Spatial and temporal changes of dissolved oxygen in waters of the Pajarales complex, Ciénaga Grande de Santa Marta: Two decades of monitoring. Sci Total Environ. 2021;785:147203.

Azhari SL. Analisis Chemical Oxygen Demand (Cod), Dissolved Oxygen (Do) Dan Total Suspended Solid (Tss) Air Sungai Kedungsoko Di Dinas Lingkungan Hidup Kabupaten Nganjuk. 2022;

Zhang W, Rong N, Jin X, Meng X, Han S, Zhang D, et al. Dissolved oxygen variation in the North China Plain river network region over 2011–2020 and the influencing factors. Chemosphere. 2022;287:132354.

Hendrayana H, Raharjo P, Samudra SR. Komposisi Nitrat, Nitrit, Amonium dan Fosfat di Perairan Kabupaten Tegal. J Mar Res. 2022;11(2):277–83.

Jiang Y, McAdam E, Zhang Y, Heaven S, Banks C, Longhurst P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J Water Process Eng. 2019;32:100899.

Alprol AE, Heneash AMM, Soliman AM, Ashour M, Alsanie WF, Gaber A, et al. Assessment of water quality, eutrophication, and zooplankton community in Lake Burullus, Egypt. Diversity. 2021;13(6):268.

Putri WAE, Purwiyanto AIS, Agustriani F, Suteja Y. Kondisi nitrat, nitrit, amonia, fosfat dan BOD di Muara Sungai Banyuasin, Sumatera Selatan. J Ilmu dan Teknol Kelaut Trop. 2019;11(1):65–74.

Silalahi FRW, Zainuri M, Wulandari SY. Studi kandungan logam berat timbal (Pb) dan seng (Zn) di perairan muara sungai Cisadane Kabupaten Tangerang. Indones J Oceanogr. 2023;5(1):1–6.

Nyamunda BC, Chivhanga T, Guyo U, Chigondo F. Removal of Zn (II) and Cu (II) ions from industrial wastewaters using magnetic biochar derived from water hyacinth. J Eng. 2019;2019.

Nailis N, Sunarti RN, Aprilia A, Pratiwi A. Analisis Kadar Sulfat (SO4), Fenol dan Phosfat (PO4) pada Air Sungai di Kabupaten Muara Enim, Sumatera Selatan. In: Prosiding Seminar Nasional Sains dan Teknologi Terapan. 2021. p. 203–11.

Yahaya A, Okoh OO, Agunbiade FO, Okoh AI. Occurrence of phenolic derivatives in Buffalo River of Eastern Cape South Africa: exposure risk evaluation. Ecotoxicol Environ Saf. 2019;171:887–93.

Mainali K. Phenolic compounds contaminants in water: A Glance. Curr Trends Civ Struct Eng. 2020;4(4).

Sarma GVS, Rani KS, Chandra KS, Babu BK, Ramesh K V. Potential removal of phenol using modified laterite adsorbent. 2020;

Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, et al. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phyther Res. 2019;33(9):2221–43.

Singh AK, Chandra R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquat Toxicol. 2019;211:202–16.

Sachan P, Madan S, Hussain A. Isolation and screening of phenol-degrading bacteria from pulp and paper mill effluent. Appl Water Sci. 2019;9:1–6.

Anisafitri J, Khairuddin K, Rasmi DAC. Analisis Total Bakteri Coliform Sebagai Indikator Pencemaran Air Pada Sungai Unus Lombok. J Pijar Mipa. 2020;15(3):266–72.

Pratiwi AD, Widyorini NN, Rahman A. An Analysis of Waters Quality Based on Coliform Bacteria in Plumbon River, Semarang. Manag Aquat Resour J. 2019;8(3):211–20.

Akrong MO, Amu-Mensah FK, Amu-Mensah MA, Darko H, Addico GND, Ampofo JA. Seasonal analysis of bacteriological quality of drinking water sources in communities surrounding Lake Bosomtwe in the Ashanti Region of Ghana. Appl Water Sci. 2019;9:1–6.

Castro Fernández MF, Cárdenas Manosalva IR, Colmenares Quintero RF, Montenegro Marín CE, Diaz Cuesta YE, Escobar Mahecha D, et al. Multitemporal Total Coliforms and Escherichia coli Analysis in the Middle Bogotá River Basin, 2007–2019. Sustainability. 2022;14(3):1769.




DOI: https://doi.org/10.24853/jkk.18.2.249-259

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Kedokteran dan Kesehatan is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View My Stats website statistics
Powered by Puskom-UMJ