PENERAPAN TRANFORMASI LINEAR DALAM RUANG LINGKUP BAHASA PADA ERA DIGITAL

Zaki Maulana Hidayat, Sisilia Sylviani, Anita Triska

Abstract


Transformasi linier merupakan topik yang sering ditemui dalam kajian Aljabar. Beberapa peneliti dalam bidang matematika menggunakan transformasi linear dalam penelitian mereka. Penggunaan transformasi linear tersebut tidak hanya diterapkan dan diteliti dalam bidang matematika saja, tetapi di bidang lain juga dapat diterapkan. Salah satunya adalah penerapan dalam bidang bahasa. Pada paper ini dijelaskan mengenai beberapa penelitian dalam bidang tersebut yang menggunakan transformasi linear pada penelitiannya, Dari penelitian tersebut, para peneliti mengungkapkan bahwa penggunaan transformasi linear dapat memudahkan peneliti dalam menganalisis kesamaan makna kata dari vekor representasinya serta penerapannya lebih efektif dan efisien dibanding dengan metode yang lain

Keywords


transformasi linear, word embedding, matematika, aljabar

Full Text:

PDF

References


Abdul Majid, A., Noliza Bakar, N., & Yanita. 2019. “Sifat-Sifat Matriks Ortogonal Dan Transformasi Ortogonal”. Jurnal Matematika UNAND.Vol. VIII (2), pp: 7 – 14.

Aeni, S. N. 2022. Menilik Sejarah Media Sosial, Manfaat, dan Contohnya - Teknologi Katadata.co.id. [Online] Tersedia: https://katadata.co.id/sitinuraeni/digital/6246823429ac2/menilik-sejarah-media-sosial-manfaat-dan-contohnya

Alipour, G., Bagherzadeh Mohasefi, J., & Feizi-Derakhshi, M. R. 2022. “Learning Bilingual Word Embedding Mappings with Similar Words in Related Languages Using GAN”. Applied Artificial Intelligence. Vol. 36(1).

Annur, C. M. 2021. Imbas Pandemi Covid-19, Pendapatan Zoom Meroket 191% pada Kuartal I-2021. [Online] Tersedia: https://databoks.katadata.co.id/datapublish/2021/07/14/imbas-pandemi-covid-19-pendapatan-zoom-meroket-191-pada-kuartal-i-2021

Anton, H., & Rorres, C. 2013. Elementary Linear Algebra: Applications Version, 11th Edition. Dalam John Wiley & Sons Incorporated (11th ed.). https://doi.org/10.1201/b17671-9

Artetxe, M., Labaka, G., Agirre, E., & Cho, K. 2017. Unsupervised Neural Machine Translation. http://arxiv.org/abs/1710.11041

Bollegala, D., Hayashi, K., & Kawarabayashi, K.-I. 2017. “Learning linear transformations between counting-based and prediction-based word embeddings”. https://doi.org/10.1371/journal.pone.0184544

Brownlee, J. 2019. What Are Word Embeddings for Text? Machine Learning Mastery. [Online] Tersedia: https://machinelearningmastery.com/what-are-word-embeddings/

Brychcín, T. 2020. “Linear transformations for cross-lingual semantic textual similarity”. Knowledge-Based Systems, 187. https://doi.org/10.1016/j.knosys.2019.06.027

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., & Jégou, H. 2017. Word Translation Without Parallel Data. [Online] Tersedia: http://arxiv.org/abs/1710.04087

Curry, D. 2023.. Most Popular Apps (2023) - Business of Apps. [Online] Tersedia: https://www.businessofapps.com/data/most-popular-apps/

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. [Online] Tersedia: http://arxiv.org/abs/1810.04805

Dewantara, A. 2021.. Bekerja dari Rumah (Work From Home/WFH) : Menghadapi COVID-19 pada PPKM Level 4. [Online] Tersedia: https://www.djkn.kemenkeu.go.id/kpknl-palu/baca-artikel/14156/Bekerja-dari-Rumah-Work-From-HomeWFH-Menghadapi-COVID-19-pada-PPKM-Level-4.html

Doval, Y., Camacho-Collados, J., Espinosa-Anke, L., & Schockaert, S. 2018. Improving Cross-Lingual Word Embeddings by Meeting in the Middle. [Online] Tersedia: http://arxiv.org/abs/1808.08780

Hewitt, J., & Manning, C. D. 2019. A Structural Probe for Finding Syntax in Word Representations. [Online] Tersedia: https://github.com/john-hewitt/structural-probes.

Himayati, A. I. A. 2020. “Regulatritas dan Relasi Green pada Semigrup Transformasi Linear Parsial Injektif dengan Restriksi Range”. Jurnal Karya Pendidikan Matematika. Vol. 7 (2), pp: 73 -80.

Indonesia: smartphone users 2026 | Statista. 2023. Statista Research Department. [Online] Tersedia: https://www.statista.com/statistics/266729/smartphone-users-in-indonesia/

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. 2016. Bag of Tricks for Efficient Text Classification. [Online] Tersedia: http://arxiv.org/abs/1607.01759

Kedem, D., Tyree, S., Weinberger, K. Q., Sha, F., & Lanckriet, G.2012. Non-linear Metric Learning.

Keerthi, S. S., Schnabel, T., & Khanna, R. 2015. Towards a Better Understanding of Predict and Count Models. [Online] Tersedia: http://arxiv.org/abs/1511.02024

Khandelwal, R. 2019. Word Embeddings for NLP. Understanding word embeddings and their… | by Renu Khandelwal | Towards Data Science. Towards Data Science. [Online] Tersedia: https://towardsdatascience.com/word-embeddings-for-nlp-5b72991e01d4

Levy, O., & Goldberg, Y. 2014. Neural Word Embedding as Implicit Matrix Factorization.

Li, X., Liu, S., Kautz, J., & Yang, M.-H. 2019. “Learning Linear Transformations for Fast Image and Video Style Transfer”. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2019.00393

Liddy, E. D. 2001. Natural Language Processing. [Online] Tersedia: https://surface.syr.edu/istpub

Lidwina, A. 2021.. Jumlah Unduhan Aplikasi Global Naik 8,7% pada Kuartal I-2021. Databoks. [Online] Tersedia: https://databoks.katadata.co.id/datapublish/2021/05/07/jumlah-unduhan-aplikasi-global-naik-87-pada-kuartal-i-2021

Mahdi, I. M. 2022. Zoom Kuasai Pangsa Platform Konferensi Video Dunia pada 2021. DataIndonesiai.d. [Online] Tersedia: https://dataindonesia.id/digital/detail/zoom-kuasai-pangsa-platform-konferensi-video-dunia-pada-2021

Mikolov, T., Chen, K., Corrado, G., & Dean, J. 2013. Efficient Estimation of Word Representations in Vector Space. [Online] Tersedia: http://arxiv.org/abs/1301.3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. 2013. Distributed Representations of Words and Phrases and their Compositionality. [Online] Tersedia: http://arxiv.org/abs/1310.4546

Nurdin, A., Anggo Seno Aji, B., Bustamin, A., & Abidin, Z. 2020. “Perbandingan Kinerja Word Embedding Word2Vec, Glove, Dan Fasttext Pada Klasifikasi Teks”. Jurnal Tekno Kompak. Vol. 14(2), pp:74. https://doi.org/10.33365/jtk.v14i2.732

Oktaviana, D., Noviani, E., & Fran, F. 2020. “Transformasi Givens dan Penerapannya”. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya. Vol 9, pp: 213–222.

Pennington, J., Socher, R., & Manning, C. D. 2014. GloVe: Global Vectors for Word Representation. [Online} Tersedia: https://doi.org/10.3115/v1/D14-1162

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. 2018. Deep contextualized word representations. [Online] Tersedia: http://arxiv.org/abs/1802.05365

Rika Ayu Febrilia, B., Chairun Nissa, I., Pujilestari, & Utami Setyawati, D. 2020. Analisis Keterlibatan Dan Respon Mahasiswa Dalam Pembelajaran Daring Menggunakan Google Classroom Di Masa Pandemi Covid-19. Fibonacci: Jurnal Pendidikan Matematika Dan Matematika. Vol. 6(2), pp: 175–184.

Susanti, R. D., & Effendi, M. M. 2022. Efektivitas Penggunaan Edmodo Dalam Pelaksanaan Ulangan Harian Matematika. Fibonacci: Jurnal Pendidikan Matematika Dan Matematika. Vol. 6(1), pp: 9–16.

Turner, A. (t.t.). 2023.How Many People Have Smartphones Worldwide. [Online] Tersedia: https://www.bankmycell.com/blog/how-many-phones-are-in-the-world




DOI: https://doi.org/10.24853/fbc.9.1.1-12

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 FIBONACCI: Jurnal Pendidikan Matematika dan Matematika

Jurnal Fibonacci Indexed By:

  gs cro   one            

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Powered by Puskom-UMJ