RANK MINIMUM MATRIKS HERMITE YANG DIGAMBARKAN GRAF G
DOI:
https://doi.org/10.24853/fbc.4.2.97-104Kata Kunci:
Rank Minimum, Matriks Hermite, Graf, Matriks Adjacency.Abstrak
Rank minimum dari matriks Hermite yang digambarkan oleh graf G didefinisikan dengan rank terkecil dari matriks Hermite suatu graf G. Graf yang digunakan adalah graf komplit, graf lintasan, graf sikel, graf bipartisi komplit, dan graf star. Dalam menentukan rank minimum yang digambarkan graf tersebut dengan cara membuat matriks adjacency dari graf G tersebut, kemudian dikembangkan menjadi beberapa matriks Hermite, kemudian dicari rank dari beberapa matriks tersebut, sehingga diperoleh rank minimum. Dalam mencari rank matriks digunakan operasi baris elementer dan dibantu dengan program Matlab. Hasil penelitian ini diperoleh:Referensi
Abdussakir, Azizah, N. N. dan Nofandika, F. F. 2009. Teori Graf. Malang: UIN-Malang Press.
Anton, H. dan Rorres, C. 2004. Aljabar Linier Elementer. Jakarta: Erlangga.
Chartrand, G. dan Ortrud, O. 1993. Applied and Algorithmic Graph Theory. Canada: McGraw-Hill Inc.
Chenette, Nathan L. dan Droms, S. V. 2007. “Minimum Rank of a Graph Over an Arbitrary Field”. Electronic Journal of Linear Algebra. Vol. 16, pp. 183-186.
Fallat, S. dan Hogben, L. 2007. “The Minimum Rank of Symmetric Matrices Described by a Graph: A Survey”. Linear Algebra and Its Applications. Vol. 462, pp. 558–582.
Leon, S. J. 2001. Aljabar Linear dan Aplikasinya. Jakarta: Erlangga.
Lipschutz, S. dan Lipson, M. L. 2002. Matematika Diskrit. Jakarta: Penerbit Salemba Teknika.
Sumartoyo, N. N. 1983. Aljabar Linear. Jakarta: Erlangga.
Wilson, R. J. dan Walkins, J. J.1990. Graphs an Intoductory Approach: A First Course in Discrete Mathematic. New York: John Wiley & Sons Inc.
##submission.downloads##
Diterbitkan
Terbitan
Bagian
Lisensi
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).