REPRESENTASI VISUAL MATEMATIS MAHASISWA DALAM MEMODELKAN KEJADIAN DINAMIS DITINJAU DARI PERBEDAAN GAYA KOGNITIF DAN JENIS KELAMIN

Ulumul Umah, Ciptianingsari Ayu Vitantri

Abstract


Representasi matematis memiliki peran penting dalam proses pemahaman konsep, penyampaian gagasan, mengoneksikan antar ide matematis, serta memodelkan masalah situasi nyata. Masalah situasi nyata yang melibatkan penyelesaian matematis antara lain berupa masalah yang berkaitan dengan kejadian dinamis yaitu perubahan nilai-nilai pada variabel seperti kecepatan dan laju. Penelitian terdahulu menunjukkan bahwa ada kecenderungan perbedaan cara belajar antar individu dengan gaya kognitif field dependent dan field independent. Selain itu, juga ditemukan perbedaan performa akademik antara laki-laki dan perempuan, meskipun tidak semua penelitian menunjukkan adanya perbedaan yang signifikan. Artikel ini mendeskripsikan bentuk representasi visual yang ditunjukkan oleh masing-masing subjek ketika memodelkan suatu kejadian dinamis terkait dengan perubahan nilai-nilai variabel. Analisis data penelitian dilakukan melalui metode kualitatif. Subjek penelitian terdiri dari empat mahasiswa dengan kombinasi gaya kognitif dan jenis kelamin yang berbeda. Hasil penelitian menunjukkan bahwa subjek laki-laki dengan gaya field independent memiliki kecenderungan lebih kuat untuk menggunakan bantuan representasi nonkonvensional sebelum menyatakannya dalam representasi yang lebih konvensional berupa grafik.


Keywords


representasi visual, gaya kognitif, model kejadian dinamis

Full Text:

PDF

References


An, D., & Carr, M. 2017. "Learning Styles Theory Fails to Explain Learning and Achievement: Recommendations for Alternative Approaches". Personality and Individual Differences, Vol. 116, pp: 410–416.

Arcavi, A. 2003. "The Role of Visual Representations in the Learning of Mathematics". Educational Studies in Mathematics. Vol. 52 (3), pp: 215–241.

Boonen, A. J. H., Van Wesel, F., Jolles, J., & Van der Schoot, M. 2014. "The Role of Visual Representation Type, Spatial Ability, and Reading Comprehension in Word Problem Solving: An Item-Level Analysis in Elementary School Children". International Journal of Educational Research. Vol. 68, pp: 15–26.

Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. 2002. "Applying Covariational Reasoning While Modeling Dynamic Events: A Framework and A Study". Journal for Research in Mathematics Education. Vol. 33 (5), pp: 352–378.

Castillo-Garsow, C., Johnson, H. L., & Moore, K. C. 2013. "Chunky and Smooth Images of Change". For the Learning of Mathematics. Vol. 33 (3), pp: 31–37.

David, M. M., Tomaz, V. S., & Ferreira, M. C. C. 2014. "How Visual Representations Participate in Algebra Classes’ Mathematical Activity". ZDM Mathematics Education. Vol. 46 (1), pp: 95–107.

Fennema, E., Carpenter, T. P., Jacobs, V. R., Franke, M. L., & Levi, L. W. 1998. "A Longitudinal Study of Gender Differences in Young Children’s Mathematical Thinking". Educational Researcher. Vol. 27 (5), pp: 6–11.

Gallager, A. M., & De Lisi, R. 1994. "Gender Difference in Scholastic Aptitude Test- Mathematics Problems Solving Among High School Students". Journal for Research in Mathematics Education. Vol. 86 (2), pp: 204–211.

Haciomeroglu, E. S., & Chicken, E. 2012. "Visual Thinking and Gender Differences in High School Calculus". International Journal of Mathematical Education in Science and Technology. Vol. 43 (3), pp: 303–313.

Haciomeroglu, E. S., Chicken, E., & Dixon, J. K. 2013. "Relationships Between Gender, Cognitive Ability, Preference, and Calculus Performance". Mathematical Thinking and Learning. Vol. 15 (3), pp: 175–189.

Lemke, J. L. 2002. "Mathematics in The Middle: Measure, Picture, Gesture, Sign, and Word. In M. Anderson, A. Saenz-Ludlow, S. Zellweger, & V. Cifarelli (Eds.)". Educational Perspectives on Mathematics as Semiosis: From Thinking to Interpreting to Knowing. Ottawa: Legas Publishing, pp: 215–234.

Lipovec, A., & Antolin, D. 2015. "Schematic and Pictorial Representations of Exponentiation. In O. Fleischmann, R. Seebauer, H. Zoglowek, & M. Aleksandrovich (Eds.)". The Teaching Profession. LIT Verlag Münster, pp. 137–144.

Miftah, R., & Orlando, A. R. 2016. "Penggunaan Graphic Organizer dalam Meningkatkan Kemampuan Representasi Matematis Siswa". FIBONACCI: Jurnal Pendidikan Matematika dan Matematika. Vol. 2 2, pp: 72–89.

NCTM. 2002. Principles and standards for school mathematics. Reston V.A: NCTM.

Oh, E., & Lim, D. 2005. "Cross Relationships Between Cognitive Styles and Learner Variables in Online Learning Environment". Journal of Interactive Online Learning. Vol. 4 (1), pp: 53–66.

Snowman, J., McCown, R., & Biehler, R. 2012. Social Cognitive Theory. Psychology Applied to Teaching (13th ed.). Belmont, CA: Wadsworth, Cengage Learning.

Subanji. 2011. Teori Berpikir Pseudo Penalaran Kovariasi. Malang: UM Press.

Tall, D. 2009. "Dynamic Mathematics and The Blending of Knowledge Structures in The Calculus". ZDM – The International Journal on Mathematics Education. Vol. 41 (4), pp: 481 – 492.

Thompson, P. W., & Carlson, M. P. 2017. "Variation, Covariation, and Functions: Foundational Ways of Thinking Mathematically. In J. Cai (Ed.), Compendium for Research in Mathematics Education. Reston, VA: Compendium for research in mathematics education, pp. 421–456.

Ulfatin, N. 2017. Metode Penelitian Kualitatif di Bidang Pendidikan: Teori dan Aplikasinya. Malang: Media Nusa Creative.

Umah, U., As’ari, A. R., & Sulandra, I. M. 2014. Penalaran Kovariasional Siswa Kelas VIIIB MTS Negeri Kediri 1 dalam Mengkonstruk Grafik Fungsi. Thesis. Malang: Universitas Negeri Malang.

Witkin, H. A., Moore, C. A., Goodenough, D. R., & Patricia W. Cox. 1977. "Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications". Review of Educational Research. Vol. 47 (1), pp: 1–64.

Yung, H. I., & Paas, F. 2015. "Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load". Educational Technology and Society. Vol. 18 (4), pp: 70–77.

Zhang, L.-F., & Sternberg, R. J. 2009. Perspectives on the nature of intellectual styles. New York: Springer.




DOI: https://doi.org/10.24853/fbc.5.1.87-96

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 FIBONACCI: Jurnal Pendidikan Matematika dan Matematika

Jurnal Fibonacci Indexed By:

  gs cro   one            

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Powered by Puskom-UMJ