PENANGANAN OVERDISPERSI PADA PEMODELAN DATA CACAH DENGAN RESPON NOL BERLEBIH (ZERO-INFLATED)
Abstract
Keywords
Full Text:
PDFReferences
Hausman, J, BH. Hall and Z Griliches. 1984. “Econometric Models for Count Data with an Application to the Patents-R&D Relationship.” Econometrica.Vol. 52 (4), pp: 909-938.
Ismail, N and Abdul AJ. 2007. Handling Overdispersion with Negative Binomial and Generalized Poisson Regression Models. Virginia: Casualty Actuarial Society Forum, Winter 2007.
Jansakul N, Hinde JP. 2002. “Score Test for Zero-Inflated Poisson Models”. Computational Statistics and Data Analysis. Vol. 40 (1) :75-96.
Jeong, KM. 2017. “Modelling Count Responses with Overdispersion”. Communication of the Korean Statistical Society Vol. 19 (6), pp: 761-770.
Jiang, Y. and L. House. 2017. “Comparison of the Performance of Count Data Models under Different Zero-Inflation Scenarios Using Simulation Studies”. In 2017 Annual Meeting, July 30-August 1, 2017. Chicago. Agricultural & Applied Economics Association.
Lambert, D. 1992. “Zero-Inflated Poisson Regression with Application to Defects in Manufacturing”. Technometrics. Vol. 34 (1), pp: 1-14.
McCullagh, P. and J. Nelder. 1989. Generalized Linear Models (second ed.). London: Chapman and Hall.
Naya H, Urioste JI, Chang YM, Motta MR, Kremer R, Gianola D. 2008. “A comparison between Poisson and zero-inflated Poisson regression models with an application to number of black spots in Corriedale sheep”. Genetics Selection Evolution. Vol. 40 (4), pp: 379-394.
Nelder, J.A. and Wedderburn, R.W.M. 1972. “Generalized Linear Models”. Journal of the Royal Statistical Society, Series A. Vol. 135 (3), pp: 370-384.
Özdemir, T and Ecevit E. 2005. “Comparison of Chi-Square and Likelihood Ratio Chi-Square Tests: Power of Test”. Journal of Applied Sciences Research. Vol. 1 (2), pp: 242-244.
Palmgren, Juni. 1981. “The Fisher Information Matrix for Log-Linear Models Arguing Conditionally in the Observed Explanatory Variables”. Biometrika. Vol. 68 (2), pp: 563-566.
Zeiless et. al. 2008. “Regression Models for Count Data in R”. Journal of Statistical Software Vol. 27 (8), pp: 1-25.
DOI: https://doi.org/10.24853/fbc.5.1.71-80
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 FIBONACCI: Jurnal Pendidikan Matematika dan Matematika
Jurnal Fibonacci Indexed By: |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License |