Design of Overheating Detection and Performance Monitoring of Solar Panel based on Internet of Things (IoT) using Smartphone

Haris Isyanto, Wahyu Ibrahim

Abstract


Solar panels are alternative energy from renewable energy. The primary problem with solar panels is heat. Ideally, the solar panel temperature is 25oC. If the temperature of solar panels rises, the solar panel components will heat up. This results in a decrease in the performance of solar panels and causes the power output to be not optimal in the electricity production process. Therefore, we designed a device that could detect overheating early and monitor the power performance of solar panels based on the Internet of Things (IoT) using a smartphone. From the test results obtained by measuring the percentage comparison between measuring instruments and sensor applications, on the parameters of average voltage Vdc 1.32%, current 2.61%, temperature 2.14%, and power 3.89%. This research is expected to help monitor overheating early warnings and monitor solar panel parameters remotely via a smartphone without having to come to the location.

Full Text:

PDF

References


B. Budiyanto and H. Setiawan, “Analisa Perbandingan Kinerja Panel Surya Vertikal Dengan Panel Surya Fleksibel Pada Jenis Monocrystalline,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 4, no. 1, p. 77, 2021, doi:

24853/resistor.4.1.77-86.

M. Mungkin, H. Satria, J. Yanti, and G. B. A. Turnip, “Perancangan Sistem Pemantauan Panel Surya Polycrystalline Menggunakan Teknologi Web Firebase Berbasis Iot,” J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 319–327, 2020.

D. Almanda and D. Bhaskara, “Studi Pemilihan Sistem Pendingin pada Panel Surya Menggunakan Water Cooler, Air Mineral dan Air Laut,” Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol.1, no. 2, p. 43, 2018, doi: 10.24853/resistor.1.2.43-52.

D. Almanda and B. P. Piliang, “Perbandingan Sistem Pendingin pada Konsentrasi Water Coolant, Air Mineral, dan Air Laut Menggunakan Panel Surya Fleksibel Monocrystaline 20 Wp,” Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol. 2, no.

, p. 73, 2019, doi: 10.24853/resistor.2.2.73-82.

N. M. Kumar, K. Atluri, and S. Palaparthi, “Internet of Things ( IoT ) in Photovoltaic Systems,” 2018 Natl. Power Eng. Conf., pp. 1–4, 2018.

R. L.R. Lokesh Babu, D. Rambabu, A. Rajesh Naidu, R. D. Prasad, and P. Gopi Krishna, “Solar Power Monitoring System using IOT,” J. Eng. Technol., vol. 7, no. 3.12, p. 526, 2018.

H. Isyanto and A. Nandiwardhana, “Perancangan DC Cooler Berbasis Internet of Things,” Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol. 2, no. 2, p. 95, 2019, doi:

24853/resistor.2.2.95-104.

M. S. Khan, H. Sharma, and A. Haque, “IoT Enabled Real-Time Energy Monitoring for Photovoltaic Systems,” Proc. Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput. Trends, Prespectives Prospect. Com. 2019, pp. 323–327, 2019, doi:

1109/COMITCon.2019.8862246.

D. D. Putra, B. Syihabuddin, M. A. M. raj Jabbar, A. Irsal, A. Purwadi, and A. Munir, “Energy Management System with IoT Connectivity for Portable Solar Power Plant,” IoTaIS 2020 - Proc. 2020 IEEE Int. Conf. Internet Things Intell. Syst., pp. 56–59, 2021, doi:

1109/IoTaIS50849.2021.9359705.

M. S. Khan, H. Sharma, and A. Haque, “IoT Enabled Real-Time Energy Monitoring for Photovoltaic Systems,” 2019 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput., pp. 323–327, 2019.

A. Kekre, “Solar Photovoltaic Remote Monitoring System Using IOT,” pp. 27–29, 2017.

A. Guwaeder, S. Member, R. Ramakumar, and L. Fellow, “Optimal Integration of PV Generation in Distribution Systems,” 2018 IEEE Conf. Technol. Sustain., pp. 1–5.

H. Lee, W. Park, I. Lee, and A. S. Grid, “Energy Management Services based on Home Energy Grid Technology,” pp. 3–6.

M. Bardwell, J. Wong, S. Zhang, and P. Musilek, “Design Considerations for IoT-based PV Charge Controllers,” no. 1, pp. 59–60, 2018, doi: 10.1109/SERVICES.2018.00043.

M. R. Faleva, D. B. Santoso, and L. Nurpulaela, “Sistem Monitoring Energi Listrik Pada Kompor Penghasil Listrik Dengan Teknologi Internet of Things (Koliss-Iot),” J. Elektro dan Telekomun. Terap., vol. 7, no. 2, p. 857, 2021, doi: 10.25124/jett.v7i2.3191.

F. Triyuandika, I. K. Ningrum, W. Djatmiko, F. Teknik, and U. N. Jakarta, “Prototipe sistem energi terbarukan rumah tangga,” J. Autocracy, pp. 114–127, 2018, doi: 10.21009/autocracy.05.2.7.

M. H. Yaghmaee, “Design and Implementation of an Internet of Things Based Smart Energy Metering,” 2018 IEEE Int. Conf. Smart Energy Grid Eng., pp. 191–194, 2018.

O. Özel, “Thermal Modelling and Energy Management of a Smart Home with Renewable Energy Sources,” pp. 97–102, 2020.

Randis and Sarminto, “Aplikasi Internet of Things Monitoring Suhu Engine,” J. Tek. Mesin Univ. Muhammadiyah Metro, vol. 7, no. 2, pp. 153–158, 2018. [20] E. B. Raharjo, S. Marwanto, and A. Romadhona, “Rancangan Sistem Monitoring Suhu Dan Kelembapan Ruang Server,” Teknika, vol. 6, no. 2, pp. 61–68, 2019.

T. Informatika, F. Ilmu, K. Universitas, and S. Karawang, “SISTEM MONITORING SUHU DAN KELEMBABAN RUANG PRODUKSI BERBASIS WIRELESS SENSOR NETWORK PADA PT . XXX MANUFACTURING SERVICES INDONESIA,” pp.136–143.

B. Ashish, “TEMPERATURE MONITORED IoT BASED SMART INCUBATOR,” pp. 497–501, 2017. [23] Y. A. Ahmad, T. S. Gunawan, H. Mansor, B. A. Hamida, A. F. Hishamudin, and F. Arifin, “On the Evaluation of DHT22 Temperature Sensor for IoT Application,” pp. 131–134, 2021.

F. Vinola and A. Rakhman, “Sistem Monitoring dan Controlling Suhu Ruangan Berbasis Internet of Things,” J. Tek. Elektro dan Komput., vol. 9, no. 2, pp.117–126, 2020, [Online]. Available: https://ejournal.unsrat.ac.id/index.php/elekdankom/articl e/view/29698.

I. Satria Wicaksana, F. Iman Ubaidillah, Y. Prasetio Hadi, S. Tyas Wahyu, and Istiadi, “Perancangan Sistem Monitoring Suhu Gudang Berbasis Internet of Things (Iot),” Conf. Innov. Appl. Sci. Technol. (CIASTECH 2018), no. September, pp. 503–511, 2018.


Refbacks

  • There are currently no refbacks.
Powered by Puskom-UMJ