ANALISIS FENOMENA SPRING-BACK/SPRING-GO FACTOR PADA LEMBARAN BAJA KARBON RENDAH MENGGUNAKAN PENDEKATAN EKSPERIMENTAL

Khoirudin Khoirudin, Sukarman Sukarman, Nana Rahdiana, Ahmad Fauzi

Abstract


Bending angle accuracy is the primary output variable that should achieve in the V-bending   process. The spring-back/spring-go factor is one of the essential variables that affect the accuracy of the bending angle. This study uses the Taguchi experimental method using four input parameters and multiple practical levels. The input parameters used in this research are V-die  opening, punch angle (punch angel), punch speed (punch speed) and bending force. The V-die  opening used two experimental levels at the practical level, while the other three parameters used three functional groups. This work selected SPCC-SD low carbon steel material with a material thickness of 0.8 mm in this study. The results of the ANOVA analysis showed that the punch angle is the main factor that affects the spring-back/spring-go factor, with the highest contribution of 76.15%. This condition is also following the results of the S/N ratio analysis, where the punch angle parameter has a delta of 0.125, followed by the punch speed, V-die  opening, and bending force. These parameters have a delta value of 0.026, 0.022, and 0.009, respectively.


Keywords


ANOVA, Bending force, Spring-back/spring-go factor, S/N ratio, V-bending.

Full Text:

PDF

References


Ahmed, G. M. S., Ahmed, H., Mohiuddin, M. V., & Sajid, S. M. S. (2014). Experimental Evaluation of Springback in Mild Steel and its Validation Using LS-DYNA. Procedia Materials Science, 6(Icmpc), 1376–1385. https://doi.org/10.1016/j.mspro.2014.07.117

Altan, T. (1998). Metal Forming Handbook. In T. Altan (Ed.), Metal Forming Handbook (Issue 5). Springer Verlag Berlin. https://doi.org/10.1007/978-3-642-58857-0

Budianto, A., Jumawan, S. B., & Abdulah, A. (2020). OPTIMASI RESPON TUNGGAL PADA PROSES TEXTURING BENANG DTY-150D / 96F MENGGUNAKAN METODE TAGUCHI SINGLE RESPONSE OPTIMIZATION OF DTY-150D / 96F YARN TEXTURING PROCESS USING TAGUCHI METHOD. 77–86.

Fertas, O., Boumerzoug, Z., & Nessark, B. (2021). Heat Treatment Effect On Galvanized Low Carbon Steel. Suranaree Journal of Science and Technology, 28(1), 1–7.

Karaağaç, İ. (2017). The Experimental Investigation of Springback in V-Bending Using the Flexforming Process. Arabian Journal for Science and Engineering, 42(5), 1853–1864. https://doi.org/10.1007/s13369-016-2329-6

Khoirudin, K., Murtalim, M., Sukarman, S., Dewadi, F. M., Rahdiana, N., Raais, A., Abdulah, A., Anwar, C., & Abbas, A. (2021). Mechanical Engineering for Society and Industry A Report on Metal Forming Technology Transfer from Expert to Industry for Improving Production Efficiency. 93–100.

Kim, H. S., & Koç, M. (2008). Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions. Journal of Materials Processing Technology, 204(1–3), 370–383. https://doi.org/10.1016/j.jmatprotec.2007.11.059

Leu, D. K., & Hsieh, C. M. (2008). The influence of coining force on spring-back reduction in V-die bending process. Journal of Materials Processing Technology, 196(1–3), 230–235. https://doi.org/10.1016/j.jmatprotec.2007.05.033

Leu, D. K., & Zhuang, Z. W. (2016). Springback prediction of the vee bending process for high-strength steel sheets. Journal of Mechanical Science and Technology, 30(3), 1077–1084. https://doi.org/10.1007/s12206-016-0212-8

Meinders, T., Burchitz, I. A., Bonte, M. H. A., & Lingbeek, R. A. (2008). Numerical product design: Springback prediction, compensation and optimization. International Journal of Machine Tools and Manufacture, 48(5), 499–514. https://doi.org/10.1016/j.ijmachtools.2007.08.006

Nana, dkk, R. (2020). Analisis Pengaruh Radius Bending Pada Proses Bending Menggunakan Pelat Spcc-Sd Terhadap Perubahan. 01(01), 1–10.

Osman, M., Shazly, M., El Mokadddem, A., & Wifi, A. S. (2010). Springback prediction in V-die bending : modelling and experimentation. Journal of Achievement in Materials and Manufacturing Engineering, 38(2), 179–186.

Panthi, S. K., Ramakrishnan, N., Ahmed, M., Singh, S. S., & Goel, M. D. (2010). Finite Element Analysis of sheet metal bending process to predict the springback. Materials and Design, 31(2), 657–662. https://doi.org/10.1016/j.matdes.2009.08.022

Parsa, M. H., ahkami, S. N. al, & Ettehad, M. (2010). Experimental and finite element study on the spring back of double curved aluminum/polypropylene/aluminum sandwich sheet. Materials and Design, 31(9), 4174–4183. https://doi.org/10.1016/j.matdes.2010.04.024

Phanitwong, W., Sontamino, A., & Thipprakmas, S. (2013). Effects of part geometry on spring-back/spring-go feature in U-bending process. Key Engineering Materials, 549, 100–107. https://doi.org/10.4028/www.scientific.net/KEM.549.100

Rahmani, B., Alinejad, G., & Gorji, A. (2009). An investigation on springback / negative springback phenomena using finite element method and experimental approach. 223, 841–850. https://doi.org/10.1243/09544054JEM1321

Sahithi, V. V.D., Malayadri, T., & Srilatha, N. (2019). Optimization of turning parameters on surface roughness based on taguchi technique. Materials Today: Proceedings, 18, 3657–3666. https://doi.org/10.1016/j.matpr.2019.07.299

Suchy, I. (2006). Handbook of Die Design (second). McGraw-Hill.

Sukarman, Anwar, C., Rahdiana, N., & Ramadhan, A. I. (2020). ANALISIS PENGARUH RADIUS DIES TERHADAP SPRINGBACK LOGAM LEMBARAN STAINLESS-STEEL PADA PROSES BENDING HIDROLIK V-DIE. Junal Teknologi, 12(2).

Sukarman, S., & Abdulah, A. (2021). Optimasi parameter resistance spot welding pada pengabungan baja electro-galvanized menggunakan metode Taguchi. Dinamika Teknik Mesin, 11(1), 39–48. https://doi.org/https://doi.org/10.29303/dtm.v11i1.372

Sukarman, S., Shieddieque, A. D., Anwar, C., Rahdiana, N., & Ramadhan, A. I. (2021). Optimization of Powder Coating Process Parameters in Mild Steel (Spcc-Sd) To Improve Dry Film Thickness. Journal of Applied Engineering Science, 19(2), 1–9. https://doi.org/10.5937/jaes0-26093

Tekaslan, Ö., Gerger, N., & Şeker, U. (2008). Determination of spring-back of stainless steel sheet metal in “V” bending dies. Materials and Design, 29(5), 1043–1050. https://doi.org/10.1016/j.matdes.2007.04.004

Thipprakmas, S., & Phanitwong, W. (2011). Process parameter design of spring-back and spring-go in V-bending process using Taguchi technique. Materials and Design, 32(8–9), 4430–4436. https://doi.org/10.1016/j.matdes.2011.03.069

Thipprakmas, S., & Rojananan, S. (2008). Investigation of spring-go phenomenon using finite element method. Materials and Design, 29(8), 1526–1532. https://doi.org/10.1016/j.matdes.2008.02.002

Troive, L., Bałon, P., Świątoniowski, A., Mueller, T., & Kiełbasa, B. (2017). Springback compensation for a vehicle’s steel body panel. International Journal of Computer Integrated Manufacturing, 31(2), 152–163. https://doi.org/10.1080/0951192X.2017.1379096

Wang, J., Verma, S., Alexander, R., & Gau, J. T. (2008). Springback control of sheet metal air bending process. Journal of Manufacturing Processes, 10(1), 21–27. https://doi.org/10.1016/j.manpro.2007.09.001

Zang, S. L., Liang, J., & Guo, C. (2007). A constitutive model for spring-back prediction in which the change of Young’s modulus with plastic deformation is considered. International Journal of Machine Tools and Manufacture, 47(11), 1791–1797. https://doi.org/10.1016/j.ijmachtools.2007.01.003




DOI: https://doi.org/10.24853/jurtek.14.1.27-38

Refbacks

  • There are currently no refbacks.


Powered by Puskom-UMJ