ANALISIS SENTIMEN TERHADAP MOBIL LISTRIK DI INDONESIA PADA TWITTER: PENERAPAN NAÏVE BAYES CLASSIFIER UNTUK MEMAHAMI OPINI PUBLIK

Assiva Nurul Huzna, Indah Nurhayati, Alda Eva Saputri, Mohammad Qomarul Huda

Abstract


Penelitian ini bertujuan untuk menganalisis sentimen terhadap mobil listrik di Indonesia melalui Twitter dengan menerapkan Naïve Bayes Classifier guna memahami opini publik di media sosial. Data yang dikumpulkan mencakup 223 sentimen negatif dan 162 sentimen positif terkait mobil listrik. Metode klasifikasi Naïve Bayes digunakan untuk mengidentifikasi dan mengelompokkan sentimen-sentimen tersebut. Hasil penelitian menunjukkan bahwa opini publik cenderung bervariasi, dengan 48% sentimen negatif dan 52% sentimen positif. Faktor-faktor seperti harga, infrastruktur pengisian, dan performa kendaraan menjadi fokus utama dalam pembentukan opini. Implikasi temuan ini dapat memberikan wawasan bagi pemangku kepentingan industri mobil listrik di Indonesia untuk mengidentifikasi area peningkatan dan pengembangan guna memperkuat penerimaan masyarakat terhadap teknologi ramah lingkungan ini.


References


üero-Torales, M. M., Cobo, M. J., Herrera-Viedma, E., & López-Herrera, A. G. (2019). A cloud-based tool for sentiment analysis in reviews about restaurants on TripAdvisor. Procedia Computer Science, 162, 392–399. https://doi.org/10.1016/j.procs.2019.12.002

Electric Vehicles Initiative. (2019). Electric Vehicles Initiative – Programmes - IEA. https://www.iea.org/programmes/electric-vehicles-initiative

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Kemp, S. (2023). Digital 2023: Global Overview Report. https://datareportal.com/reports/digital-2023-global-overview-report

Leelawat, N., Jariyapongpaiboon, S., Promjun, A., Boonyarak, S., Saengtabtim, K., Laosunthara, A., Yudha, A. K., & Tang, J. (2022). Twitter data sentiment analysis of tourism in Thailand during the COVID-19 pandemic using machine learning. Heliyon, 8(10). https://doi.org/10.1016/j.heliyon.2022.e10894

Sailunaz, K., & Alhajj, R. (2019). Emotion and sentiment analysis from Twitter text. Journal of Computational Science, 36, 101003. https://doi.org/https://doi.org/10.1016/j.jocs.2019.05.009

Shaik, T., Tao, X., Dann, C., Xie, H., Li, Y., & Galligan, L. (2023). Sentiment analysis and opinion mining on educational data: A survey. Natural Language Processing Journal, 2, 100003. https://doi.org/https://doi.org/10.1016/j.nlp.2022.100003

The Jakarta Post. (2023, December). Sesak napas di Jakarta. https://www.thejakartapost.com/opinion/2023/06/21/breathless-in-jakarta.html?lang=id

We Are Social. (2023, December). Digital 2023. https://wearesocial.com/id/blog/2023/01/digital-2023/

World Bank Group. (2020, February 11). The hidden wealth of cities: creating, financing, and managing public spaces. The World Bank. https://www.worldbank.org/en/topic/urbandevelopment/publication/the-hidden-wealth-of-cities-creating-financing-and-managing-public-spaces

Xu, Q. A., Chang, V., & Jayne, C. (2022). A systematic review of social media-based sentiment analysis: Emerging trends and challenges. Decision Analytics Journal, 3, 100073. https://doi.org/doi.org/10.1016/j.dajour.2022.100073




DOI: https://doi.org/10.24853/justit.14.2.87-93

Refbacks

  • There are currently no refbacks.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Statistik Pengunjung

Powered by Puskom-UMJ