The Influence of Water Temperature on Seawater Evaporation in the Desalination Process

Adi Tegar Sayuti, Dan Mugisidi, Ristanto Wirangga, Oktarina Heriyani

Abstract


Population An increase in population in an area results in an increased demand for clean water. Although water is abundant, about 97% of the water on Earth is seawater, which cannot be consumed directly because it contains harmful substances. Desalination process is used to convert seawater into drinking water by utilizing heat and wind speed. This research explores temperatures of 30℃, 45℃, 60℃, and 70℃ with a wind speed of 2.6 m/s. Data was collected for each temperature variation for 2 hours with records every 15 minutes, aiming to evaluate the effectiveness of evaporation and condensation in the desalination process. The results showed that 70℃ resulted in the highest evaporation (800 grams), although with a condensation rate of 26.25%. Condensate measurements showed a pH of 7.2 and TDS meter readings ranged from 125 to 138 ppm.


Keywords


desalination; seawater conversion; evaporation effectiveness; condensation rate

Full Text:

PDF

References


A. Sakka, R. Musa, and H. Ashad, “Kajian Ketersediaan Air pada Daerah Irigasi Palakka Kabupaten Bone Provinsi Sulawesi Selatan,” Jurnal Konstruksi: Teknik, Infrastruktur dan Sains, vol. 01, no. 05, pp. 29–39, 2022.

A. Liponi, C. Wieland, and A. Baccioli, “Multi-effect distillation plants for small-scale seawater desalination: thermodynamic and economic improvement,” Energy Convers Manag, vol. 205, no. September 2019, p. 112337, 2020, doi: 10.1016/j.enconman.2019.112337.

C. Kenigsberg, S. Abramovich, and O. Hyams-Kaphzan, “The effect of long-term brine discharge from desalination plants on benthic foraminifera,” PLoS One, vol. 15, no. 1, pp. 1–20, 2020, doi: 10.1371/journal.pone.0227589.

V. Noperissa and R. S. B. Waspodo, “Analisis Kebutuhan dan Ketersediaan Air Domestik Menggunakan Metode Regresi di Kota Bogor,” Jurnal Teknik Sipil dan Lingkungan, vol. 3, no. 3, pp. 121–132, 2018, doi: 10.29244/jsil.3.3.121-132.

S. Lin et al., “Seawater desalination technology and engineering in China: A review,” Desalination, vol. 498, no. May 2020, p. 114728, 2021, doi: 10.1016/j.desal.2020.114728.

A. Amirfakhraei, T. Zarei, and J. Khorshidi, “Performance improvement of adsorption desalination system by applying mass and heat recovery processes,” Thermal Science and Engineering Progress, vol. 18, p. 100516, 2020, doi: 10.1016/j.tsep.2020.100516.

D. Mugisidi and O. Heriyani, “Study of Utilization under Sea-water Hydrostatic Pressure as Hydro Power Generation,” E3S Web of Conferences, vol. 73, pp. 2–4, 2018, doi: 10.1051/e3sconf/20187301020.

W. Bunganaen, N. S. Karbeka, and E. E. Hangge, “Analisis Ketersediaan Air Terhadap Pola Tanam dan Luas Areal Irigasi Daerah Irigasi Siafu,” Jurnal Teknik Sipil, vol. IX, no. 1, pp. 15–26, 2020.

M. Z. Lubis et al., “Pemberian Mini House (Destilator) Air laut kepada masyarakat Pantai Setokok, Batam, Guna membantu dalam penyediaan stok air bersih (Air Tawar), dan mendukung Parawisata,” Jurnal Pengabdian kepada Masyarakat Politeknik Negeri Batam, vol. 2, no. 2, pp. 112–120, 2021, doi: 10.30871/abdimaspolibatam.v2i2.2601.

F. Saputra, “Analisis Ketersediaan Air Irigasi Untuk Pertanian Padi di Kecamtan Padang Ganting Kabupaten Tanah Datar,” JURNAL BUANA, vol. 2, no. 2, p. 584, 2018, doi: 10.24036/student.v2i2.113.

S. Stein et al., “The effects of long-term saline groundwater pumping for desalination on the fresh–saline water interface: Field observations and numerical modeling,” Science of the Total Environment, vol. 732, p. 139249, 2020, doi: 10.1016/j.scitotenv.2020.139249.

T. E. Storage, “Pengembangan Alat Desalinasi Air Laut dengan Teknologi Thermal Energy Storage Development of Seawater Desalination Equipment with Technology,” vol. 5, pp. 171–178, 2023.

Y. Januardi, M. Rosi, and I. P. Handayani, “Sistem Desalinasi Air Laut Menggunakan Prinsip Capacitive Deionization ( Cdi ) Berbasis Karbon Aktif Sea Water Desalination System Using Carbon Based Capacitive Deoinization ( Cdi ),” e-Proceeding of Engineering, vol. 3, no. 2, pp. 2047–2053, 2016.

M. M. Armendáriz-Ontiveros et al., “Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System,” Energies (Basel), vol. 15, no. 20, 2022, doi: 10.3390/en15207787.

Z. Xu, X. Yan, Z. Du, J. Li, and F. Cheng, “Effect of oxygenic groups on desalination performance improvement of graphene oxide-based membrane in membrane distillation,” Sep Purif Technol, vol. 251, no. June, p. 117304, 2020, doi: 10.1016/j.seppur.2020.117304.

A. Pratama and F. Rahmadianto, “Analisa Perancangan Desalinasi Air Laut Dengan Variasi Filter Tempurung Kelapa Dan Variasi Temperatur Pemanasan,” Jurnal Flywheel, vol. 12, no. 2, pp. 21–29, 2021, doi: 10.36040/flywheel.v12i2.4279.

D. Mugisidi, B. Fajar, T. Utomo, and Syaiful, “The Effect of Water Surface Level in sensible heat material on Yield of Single Basin Solar Still: Experimental Study,” J Phys Conf Ser, vol. 1373, no. 1, 2019, doi: 10.1088/1742-6596/1373/1/012014.

D. Mugisidi, A. Rahman, O. Heriyani, and P. H. Gunawan, “Determination of the convective heat transfer constant (c and n) in a solar still,” Jurnal Teknosains, vol. 11, no. 1, p. 1, 2021, doi: 10.22146/teknosains.50908.

D. Mugisidi et al., “Iron sand as a heat absorber to enhance performance of a single-basin solar still,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 70, no. 1, pp. 125–135, 2020, doi: 10.37934/ARFMTS.70.1.125135.

T. Arunkumar and A. E. Kabeel, “Effect of phase change material on concentric circular tubular solar still-Integration meets enhancement,” Desalination, vol. 414, pp. 46–50, 2017, doi: 10.1016/j.desal.2017.03.035.

M. Feilizadeh, M. R. Karimi Estahbanati, A. Ahsan, K. Jafarpur, and A. Mersaghian, “Effects of water and basin depths in single basin solar stills: An experimental and theoretical study,” Energy Convers Manag, vol. 122, pp. 174–181, 2016, doi: 10.1016/j.enconman.2016.05.048.

A. Awasthi, K. Kumari, H. Panchal, and R. Sathyamurthy, “Passive solar still: recent advancements in design and related performance,” Environmental Technology Reviews, vol. 7, no. 1, pp. 235–261, 2018, doi: 10.1080/21622515.2018.1499364.

Z. M. Omara and A. E. Kabeel, “The performance of different sand beds solar stills,” Int J Green Energy, vol. 11, no. 3, pp. 240–254, 2014, doi: 10.1080/15435075.2013.769881.

D. Mugisidi, R. S. Cahyani, O. Heriyani, D. Agusman, and Rifky, “Effect of Iron Sand in Single Basin Solar Still: Experimental Study,” IOP Conf Ser Earth Environ Sci, vol. 268, no. 1, 2019, doi: 10.1088/1755-1315/268/1/012158.

C. P. Koutsou, E. Kritikos, A. J. Karabelas, and M. Kostoglou, “Analysis of temperature effects on the specific energy consumption in reverse osmosis desalination processes,” Desalination, vol. 476, no. October 2019, p. 114213, 2020, doi: 10.1016/j.desal.2019.114213.

H. Rostamzadeh, H. Ghiasirad, M. Amidpour, and Y. Amidpour, “Performance enhancement of a conventional multi-effect desalination (MED) system by heat pump cycles,” Desalination, vol. 477, no. November 2019, p. 114261, 2020, doi: 10.1016/j.desal.2019.114261.

A. Mukaddim, M. Wirawan, and I. B. Alit, “Analisa Pengaruh Variasi Bentuk Absorber Pada Alat Destilasi Air Laut Terhadap Kenaikan Suhu Air Dalam Ruang Pemanas Dan Jumlah Penguapan Air Yang Dihasilkan,” Dinamika Teknik Mesin, vol. 3, no. 2, pp. 127–135, 2013, doi: 10.29303/d.v3i2.79.

M. Mulyanef, B. Burmawi, and K. Muslimin, “Pengolahan Air Laut Menjadi Air Bersih Dan Garam Dengan Destilasi Tenaga Surya,” Jurnal Teknik Mesin ISSN …, vol. 4, no. 1, pp. 25–29, 2015.

R. Adhitya Putra, G. Ahmad Pauzi, and A. Surtono, “Rancang Bangun Alat Destilasi Air Laut dengan Metode Ketinggian Permukaan Air Selalu Sama Menggunakan Energi Matahari,” Jurnal Teori dan Aplikasi Fisika, vol. 06, no. 01, pp. 101–107, 2018.

H. Haryadi, I. Rosyadi, and N. K. Caturwati, “Rancang Bangun Alat Destilasi Air Laut Menjadi Air Tawar Menggunakan Tenaga Surya,” Teknika: Jurnal Sains dan Teknologi, vol. 12, no. 2, p. 431, 2016, doi: 10.36055/tjst.v12i2.6608.

D. Purwadianto and F. A. R. Sambada, “Unjuk Kerja Destilasi Air Energi Surya Menggunakan Kondenser Pasif,” Jurnal Penelitian, vol. 5, no. 1, pp. 34–41, 2013.

G. Djoyowasito, A. M. Ahmad, M. Lutfi, and A. Anggra, “Rancang Bangun Model Penghasil Air Tawar dan Garam dari Air Laut Berbasis Efek Rumah Kaca Tipe Penutup Limas,” Jurnal Keteknikan Pertanian Tropis dan Biosistem, vol. 6, no. 2, pp. 107–119, 2018.

Mulyanef, Sari M, Mario W, and Nasution H, “Kaji Eksperimental Untuk Meningkatkan Performasi Destilasi Surya Basin Tiga Tingkat Menggunakan Beberapa Bahan Penyimpan Panas,” Jurnal Teknik Mesin, vol. 2, no. 1, pp. 7–12, 2012.

S. A. Kalogirou, “Seawater desalination using renewable energy sources,” Prog Energy Combust Sci, vol. 31, no. 3, pp. 242–281, 2005, doi: 10.1016/j.pecs.2005.03.001.

S. Al-Kharabsheh and D. Y. Goswami, “Theoretical analysis of a water desalination system using low grade solar heat,” Journal of Solar Energy Engineering, Transactions of the ASME, vol. 126, no. 2, pp. 774–780, 2004, doi: 10.1115/1.1669450.

G. N. Tiwari and L. Sahota, “Review on the energy and economic efficiencies of passive and active solar distillation systems,” Desalination, vol. 401, pp. 151–179, 2017, doi: 10.1016/j.desal.2016.08.023.

M. R. Qtaishat et al., “Desalination at ambient temperature and pressure by a novel class of biporous anisotropic membrane,” Sci Rep, vol. 12, no. 1, pp. 1–8, 2022, doi: 10.1038/s41598-022-17876-8.

A. R. F. Gani, N. A. Putri, S. S. Habibi, and ..., “Desalinasi Dengan Metode Evaporasi Sebagai Penyedia Air Bersih Di Desa Kurandak,” Jurnal Pasopati …, vol. 4, no. 4, pp. 226–230, 2022.

A. W. Krisdiarto, A. Ferhat, A. W. Krisdiarto, and M. P. Bimantio, “Penyediaan Air Bagi Masyarakat Pesisir Terdampak Kekeringan dengan Teknologi Desalinasi Air Laut Sederhana,” DIKEMAS (Jurnal Pengabdian Kepada Masyarakat), vol. 4, no. 2, pp. 25–31, 2020, doi: 10.32486/jd.v4i2.532.

J. Ely, “Kualitas Air Hasil Desalinasi Menggunakan Sistim Destilasi Sederhana,” Global Health Science, vol. 4, no. 3, pp. 2662–1055, 2019.

B. Hamuna, R. H. R. Tanjung, S. Suwito, H. K. Maury, and A. Alianto, “Kajian Kualitas Air Laut dan Indeks Pencemaran Berdasarkan Parameter Fisika-Kimia di Perairan Distrik Depapre, Jayapura,” Jurnal Ilmu Lingkungan, vol. 16, no. 1, p. 35, 2018, doi: 10.14710/jil.16.1.35-43.

A. T. S. Haji, R. Wirosoedarmo, and M. W. Tyas, “Analysis of Temperature Nomography, Evaporation Rate and Air Pressure for Solar-Driven Desalination System Design With Vacuum Setting,” no. March, pp. 1–7, 2018.

R. Natawisastra, R. Bramawanto, M. Ma’muri, L. Alfaris, and S. Suhernalis, “Rancang Bangun Alat Destilasi Air Laut yang Dilengkapi Pemanas Air Sederhana,” Jurnal Kelautan Nasional, vol. 17, no. 2, p. 161, 2022, doi: 10.15578/jkn.v17i2.11382.

M. I. Mowaviq, “Kendali Alat Destilasi Air Laut Elektrik Berbasis Mikrokontroler,” Kilat, vol. 10, no. 2, pp. 280–286, 2021, doi: 10.33322/kilat.v10i2.1316.

B. B. Taqwa, R. Rosalina, and H. Ramza, “Perancangan Alat Proses Distilasi Air Laut menggunakan Pemanas Elektrik,” Prosiding Seminar Nasional Teknoka, vol. 5, no. 2502, pp. 204–214, 2020, doi: 10.22236/teknoka.v5i.327.

N. P. Arif, “Rancang Bangun Destilasi Air Laut Menjadi Air Minum Menggunakan Solar PV Dengan Metode MPPT P&O,” Suara Teknik : Jurnal Ilmiah, vol. 11, no. 2, p. 14, 2020, doi: 10.29406/stek.v11i2.2058.

M. Ali, M. Lazim, A. Muin, and I. Badil, “Penyulingan Air Laut Menjadi Air Tawar,” Desiminasi Teknologi, vol. 7, no. 2, pp. 138–142, 2019.

R. Wirangga, D. Mugisidi, A. T. Sayuti, and O. Heriyani, “The Impact of Wind Speed on the Rate of Water Evaporation in a Desalination Chamber,” vol. 1, no. 1, pp. 39–50, 2023.

S. Ali and K. Waliden, “Alat Destilasi Air Laut Berbasis Energi Surya Dan Energi Elektrik Sebagai Alternatif Penyediaan Air Bersih Dan Garam,” SENSISTEK: Riset Sains dan Teknologi …, vol. 1, no. 1, pp. 42–46, 2019.

K. Astawa, M. Sucipta, I. P. Gede, and A. Negara, “Analisa Performansi Destilasi Air Laut Tenaga Surya Menggunakan Penyerap Radiasi Surya Tipe Bergelombang Berbahan Dasar Beton,” Jurnal Energi Dan Manufaktur, vol. 5, no. 1, pp. 7–13, 2012.

F. Irawan, “Troublshooting dan analisa kelembaban udara pada trainer ac split aux di laboratorium refrigerasi politeknik sekayu,” vol. 7, no. 2, pp. 45–56, 2020.

F. I. Pasaribu, A. K. Hasibuan, N. Evalina, and E. S. Nasution, “Analisa Penggunaan Surya Panel Phollycristal 240 WP Sebagai Kinerja Destilator Air Laut,” RELE (Rekayasa Elektrikal dan Energi) : Jurnal Teknik Elektro, vol. 4, no. 2, pp. 90–99, 2022, doi: 10.30596/rele.v4i2.9530.

N. P. Soelaiman, Sofyan, “Analisa prestasi kerja turbin uap pada beban yang bervariasi,” Turbin Heat Rate, pp. 1–12, 2009.

E. Y. Setyawan and D. Suhendra, “Analisis Perhitungan Evaporator dan Kondensor yang Digunakan pada Alat Desalinasi Air Laut Sistem Vakum Alami Menggunakan Energi Surya,” Flywheel, vol. 9, no. 1, pp. 22–29, 2018.

D. Mugisidi and O. Heriyani, “Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy,” E3S Web of Conferences, vol. 31, pp. 18–21, 2018, doi: 10.1051/e3sconf/20183102005.

S. Y. Wulandari, M. Yusuf, and M. Muslim, “Kajian Konsentrasi Dan Sebaran Parameter Kualitas Air Di Perairan Pantai Genuk, Semarang,” Buletin Oseanografi Marina, vol. 3, no. 1, p. 9, 2014, doi: 10.14710/buloma.v3i1.11213.




DOI: https://doi.org/10.24853/sintek.17.2.113-119

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin

Powered by Puskom-UMJ