The Influence of Nozzle Injection Pressure on Seawater Evaporation Inside an Evaporator Tube

Ikbal Prasetiyo Aji, Dan Mugisidi, Ahmad Maulana Yusuf, Oktarina Heriyani

Abstract


Indonesia, the largest archipelagic country in the world, possesses a vast marine area. Despite being surrounded by the sea, many coastal communities in Indonesia lack access to clean water. Seawater distillation presents a viable solution to this scarcity. This process involves separating salt from seawater to produce fresh water. This study aims to analyze the effect of nozzle spray pressure on the evaporation process of seawater to optimize fresh water production. Experiments were conducted using a fogging nozzle with a diameter of 0.3 mm, varying the nozzle pressure at 40 psi, 70 psi, and 100 psi. The data were statistically analyzed to determine the impact of nozzle pressure on seawater evaporation. The results indicate that the highest evaporation occurred at a nozzle pressure of 40 psi, yielding 10 g of condensed seawater, whereas the lowest evaporation was observed at 100 psi, producing 4 g.

Keywords


Seawater; Distillation; Evaporation; Pressure

References


G. P. Bonita, A. C. Heksa, S. Nurkhamidah, and Y. Rahmawati, “Pra Desain Pabrik Garam Farmasi dari Air Laut dengan Metode Reverse Osmosis,” J. Tek. ITS, vol. 11, no. 3, pp. 93–98, 2022, doi: 10.12962/j23373539.v11i3.97466.

M. Taufik, E. Khairina, R. Hidayat, R. Kalalinggi, and M. I. Fadhlurrohman, “Study of Government’s Strategy on Clean Water Availability in Indonesia,” J. Kesehat. Lingkung. Indones., vol. 21, no. 1, pp. 111–121, 2022, doi: 10.14710/jkli.21.1.111-121.

F. X. H. Kusumartono and A. Rizal, “An integrated assessment of vulnerability to water scarcity measurement in small islands of Indonesia,” An Int. Sci. J., vol. 24, no. April, pp. 117–133, 2019, [Online]. Available: www.worldnewsnaturalsciences.com.

D. Mugisidi and O. Heriyani, “Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy,” E3S Web Conf., vol. 31, pp. 18–21, 2018, doi: 10.1051/e3sconf/20183102005.

S. Maryati and Y. T. Febriani, “Status and challenges of water governance in facing the water crisis disaster in Blora Regency, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 683, no. 1, 2021, doi: 10.1088/1755-1315/683/1/012145.

M. A. Rakib, J. Sasaki, H. Matsuda, and M. Fukunaga, “Severe salinity contamination in drinking water and associated human health hazards increase migration risk in the southwestern coastal part of Bangladesh,” J. Environ. Manage., vol. 240, no. November 2018, pp. 238–248, 2019, doi: 10.1016/j.jenvman.2019.03.101.

M. Shammi, M. M. Rahman, S. E. Bondad, and M. Bodrud-Doza, “Impacts of salinity intrusion in community health: A review of experiences on drinking water sodium from coastal areas of Bangladesh,” Healthc., vol. 7, no. 1, 2019, doi: 10.3390/healthcare7010050.

M. A. Abedin, A. E. Collins, U. Habiba, and R. Shaw, “Climate Change, Water Scarcity, and Health Adaptation in Southwestern Coastal Bangladesh,” Int. J. Disaster Risk Sci., vol. 10, no. 1, pp. 28–42, 2019, doi: 10.1007/s13753-018-0211-8.

D. Chen, C. Zhang, H. Rong, C. Wei, and S. Gou, “Experimental study on seawater desalination through supercooled water dynamic ice making,” Desalination, vol. 476, no. September 2019, p. 114233, 2020, doi: 10.1016/j.desal.2019.114233.

A. Abotaleb and A. Mabrouk, “The impact of vapor box location on the performance of the multiple effect distillation for seawater desalination technology,” Desalin. Water Treat., vol. 216, pp. 1–13, 2021, doi: 10.5004/dwt.2021.26821.

Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu, and X. Liu, “Continuously Producing Watersteam and Concentrated Brine from Seawater by Hanging Photothermal Fabrics under Sunlight,” Adv. Funct. Mater., vol. 29, no. 43, pp. 1–11, 2019, doi: 10.1002/adfm.201905485.

B. Zhu et al., “Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater,” ACS Appl. Mater. Interfaces, vol. 11, pp. 35005–35014, 2019, doi: 10.1021/acsami.9b12806.

D. Sumardiyanto, S. E. Susilowati, F. Hidayat, “Penyuluhan Destilasi dan Filtrasi Air Laut Menjadi Air Bersih Untuk Masyarakat Sekitar Jakarta Utara,” BERDIKARI, vol. 4, no. 2, pp. 1–9, 2021, [Online]. Available: http://journal.uta45jakarta.ac.id/index.php/berdikari/article/view/4999.

S. Aly, J. Jawad, H. Manzoor, S. Simson, J. Lawler, and A. N. Mabrouk, “Pilot testing of a novel integrated Multi Effect Distillation - Absorber compressor (MED-AB) technology for high performance seawater desalination,” Desalination, vol. 521, no. July 2021, p. 115388, 2022, doi: 10.1016/j.desal.2021.115388.

W. Gao, Q. Qi, J. Zhang, G. Chen, and D. Wu, “An experimental study on explosive boiling of superheated droplets in vacuum spray flash evaporation,” Int. J. Heat Mass Transf., vol. 144, p. 118552, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118552.

M. H. Amirkalaei, A. Khoshgard, H. Ahmadi-Danesh-Ashtiani, and R. Fazaeli, “Evaporation rate of sprayed seawater droplets in upward and downward direction and analyzing the effect of the injection pressure and nozzle type in solar water desalination systems,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–14, 2020, doi: 10.1080/15567036.2020.1850929.

H. Raach and J. Mitrovic, “Simulation of heat and mass transfer in a multi-effect distillation plant for seawater desalination,” Desalination, vol. 204, no. 1-3 SPEC. ISS., pp. 416–422, 2007, doi: 10.1016/j.desal.2006.04.037.

C. Elango, N. Gunasekaran, and K. Sampathkumar, “Thermal models of solar still - A comprehensive review,” Renew. Sustain. Energy Rev., vol. 47, pp. 856–911, 2015, doi: 10.1016/j.rser.2015.03.054.

M. I. Ahmed, M. Hrairi, and A. F. Ismail, “On the characteristics of multistage evacuated solar distillation,” Renew. Energy, vol. 34, no. 6, pp. 1471–1478, 2009, doi: 10.1016/j.renene.2008.10.029.

W. Wang et al., “Solar Seawater Distillation by Flexible and Fully Passive Multistage Membrane Distillation,” Nano Lett., vol. 21, no. 12, pp. 5068–5074, 2021, doi: 10.1021/acs.nanolett.1c00910.

H. E. S. Fath and S. M. Elsherbiny, “Effect of adding a passive condenser on solar still performance,” Int. J. Sol. Energy, vol. 11, no. 1–2, pp. 73–89, 1992, doi: 10.1080/01425919208909731.

E. Diniardi, “Analisa Perencanaan Desalination Plant 4167 Ton / Jam,” Sintek J. J. Ilm. Tek. Mesin, pp. 22–31, 2009.

M. Fujiwara, K. Takahashi, and K. Takagi, “Improvement of condensation step of water vapor in solar desalination of seawater and the development of three-ply membrane system,” Desalination, vol. 508, no. January, p. 115051, 2021, doi: 10.1016/j.desal.2021.115051.

M. H. Amirkalaei, A. Khoshgard, H. Ahmadi-Daneshashtiani, and R. Fazaeli, “Investigation of the parameters influencing the evaporation rate of downward sprayed sea water in solar water desalination,” Desalin. Water Treat., vol. 191, pp. 64–71, 2020, doi: 10.5004/dwt.2020.25469.

S. D. Waluyo, Y. H. Providensia, N. Kartika, and L. Suprianti, “Pengaruh Diameter Nozzle Sprayer Terhadap Kadar Effect of Sprayer Nozzle Diameter on Salt Content of,” pp. 2018–2022, 2022.

C. Chen, Y. Kuang, and L. Hu, “Challenges and Opportunities for Solar Evaporation,” Joule, vol. 3, no. 3, pp. 683–718, 2019, doi: 10.1016/j.joule.2018.12.023.

R. Alrowais, C. Qian, M. Burhan, D. Ybyraiymkul, M. W. Shahzad, and K. C. Ng, “A greener seawater desalination method by direct-contact spray evaporation and condensation (DCSEC): Experiments,” Appl. Therm. Eng., vol. 179, no. June, p. 115629, 2020, doi: 10.1016/j.applthermaleng.2020.115629.

B. Cai et al., “Mathematical study of spray flash evaporation in a spray-assisted seawater desalination chamber,” Desalination, vol. 465, no. December 2018, pp. 25–37, 2019, doi: 10.1016/j.desal.2019.03.007.

F. Fathinia, M. Khiadani, Y. M. Al-Abdeli, and A. Shafieian, “Performance improvement of spray flash evaporation desalination systems using multiple nozzle arrangement,” Appl. Therm. Eng., vol. 163, no. June, 2019, doi: 10.1016/j.applthermaleng.2019.114385.

A. S. Abdullah, M. M. Younes, Z. M. Omara, and F. A. Essa, “New design of trays solar still with enhanced evaporation methods – Comprehensive study,” Sol. Energy, vol. 203, no. February, pp. 164–174, 2020, doi: 10.1016/j.solener.2020.04.039.

A. M. Manokar, D. P. Winston, A. E. Kabeel, R. Sathyamurthy, and T. Arunkumar, “Different parameter and technique affecting the rate of evaporation on active solar still -a review,” Heat Mass Transf. und Stoffuebertragung, vol. 54, no. 3, pp. 593–630, 2018, doi: 10.1007/s00231-017-2170-9.

A. S. Abdullah et al., “Rotating-drum solar still with enhanced evaporation and condensation techniques: Comprehensive study,” Energy Convers. Manag., vol. 199, no. June, p. 112024, 2019, doi: 10.1016/j.enconman.2019.112024.

O. Mahian, A. Kianifar, S. Z. Heris, D. Wen, A. Z. Sahin, and S. Wongwises, “Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger,” Nano Energy, vol. 36, no. February, pp. 134–155, 2017, doi: 10.1016/j.nanoen.2017.04.025.

A. Muthu Manokar, K. Kalidasa Murugavel, and G. Esakkimuthu, “Different parameters affecting the rate of evaporation and condensation on passive solar still - A review,” Renew. Sustain. Energy Rev., vol. 38, pp. 309–322, 2014, doi: 10.1016/j.rser.2014.05.092.

S. Shoeibi, N. Rahbar, A. Abedini Esfahlani, and H. Kargarsharifabad, “A review of techniques for simultaneous enhancement of evaporation and condensation rates in solar stills,” Sol. Energy, vol. 225, no. July, pp. 666–693, 2021, doi: 10.1016/j.solener.2021.07.028.

A. Yani, “Study experimental alat destilasi air laut terhadap kuantitas dan kualitas air tawar yang dihasilkan dengan menggunakan energi matahari,” Turbo J. Progr. Stud. Tek. Mesin, vol. 10, no. 2, 2021, doi: 10.24127/trb.v10i2.1744.

H. Guo, J. Wang, J. Wu, and X. Du, “Study on spray evaporation treatment of desulfurization wastewater,” Coatings, vol. 11, no. 4, pp. 1–19, 2021, doi: 10.3390/coatings11040418.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin

Powered by Puskom-UMJ