Analysis of the Effect of Cutting Variables against Surface Hardness
Main Article Content
Abstract
Downloads
Article Details
COPYRIGHT POLICY
The author(s) of an article published in the Journal of Applied Sciences and Advanced Technology (JASAT) retains ownership of the intellectual property rights in work (s).
PUBLISHING RIGHTS
The author(s) of an article published in the Journal of Applied Sciences and Advanced Technology (JASAT) have unrestricted publication rights. The authors give the Journal of Applied Sciences and Advanced Technology (JASAT) the right to publish the article and designate the Faculty of Engineering Universitas Muhammadiyah Jakarta Publishing as the original publisher of the article.
LICENSING POLICY
JASAT is an open-access journal that follows the Creative Commons Non-Commercial 4.0 International License (CC BY-NC 4.0), which states that:
Under this license, the reusers must give appropriate credit, provide a link to the license, and indicate if changes were made. Users may do so in any reasonable manner, but not in any way that suggests the licensor endorses users or their use.
Please take the time to read the whole license agreement (https://creativecommons.org/licenses/by-nc/4.0/). As long as reusers follow the license conditions, the owner cannot withdraw these freedoms. The following components are included under this license:
Attribution: Users must provide appropriate attribution, including a link to the license, and indicate whether or not they made any modifications. Users are free to do so reasonably, but not in a manner that indicates the licensee approves of their usage.
NonCommercial: Users may not use the material for commercial purposes.
References
Aouici, H., Yallese, M. A., Chaoui, K., Mabrouki, T., & Rigal, J. F. (2012). Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement, 45(3), 344-353.
Diniardi, E., Ramadhan, A. I., Mubarok, R., & Basri, H. (2015). Analysis of mechanical properties connecting rod bolts outboard motor FT50CEHD. International Journal of Applied Science and Engineering Research, 4(5), 665-670.
Yudistirani, S. A., Mahmud, K. H., & Diniardi, E. (2021). Stamping Disability Analysis on Material SPC 270 E. Journal of Applied Sciences and Advanced Technology, 3(3), 75-80.
Özel, T., Hsu, T. K., & Zeren, E. (2005). Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. The International Journal of Advanced Manufacturing Technology, 25(3), 262-269.
Mahmud, K. H., Yudistirani, S. A., Diniardi, E., & Ramadhan, A. I. (2020). Hardness Analysis of Bearing on Heat Treatment Process. Journal of Applied Sciences and Advanced Technology, 2(3), 59-64.
Dureja, J. S., Gupta, V. K., Sharma, V. S., & Dogra, M. (2009). Design optimization of cutting conditions and analysis of their effect on tool wear and surface roughness during hard turning of AISI-H11 steel with a coated—mixed ceramic tool. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(11), 1441-1453.
Diniardi, E., Nelfiyanti, N., Mahmud, K. H., Basri, H., & Ramadhan, A. I. (2019). Analysis of the Tensile Strength of Composite Material from Fiber Bags. Journal of Applied Sciences and Advanced Technology, 2(2), 39-48.
Rahardja, I. B., Rahdiana, N., Mulyadi, D., Al Afghani, A., & Ramadhan, A. I. (2020). Analisis Pengaruh Radius Bending Pada Proses Bending Menggunakan Pelat Spcc-Sd Terhadap Perubahan Struktur Mikro. Jurnal Teknik Mesin Mechanical Xplore, 1(1), 1-10.
Zębala, W., & Kowalczyk, R. (2015). Estimating the effect of cutting data on surface roughness and cutting force during WC-Co turning with PCD tool using Taguchi design and ANOVA analysis. The International Journal of Advanced Manufacturing Technology, 77(9-12), 2241-2256.
Sharma, V. S., Dhiman, S., Sehgal, R., & Sharma, S. K. (2008). Estimation of cutting forces and surface roughness for hard turning using neural networks. Journal of intelligent Manufacturing, 19(4), 473-483.
Diniardi, E., Setiawan, B., & Ramadhan, A. I. (2019). Fatigue Analysis Aluminium 6063-TF on the Rotary Bending Testing Machine. Journal of Applied Sciences and Advanced Technology, 2(1), 7-12.
Mia, M., & Dhar, N. R. (2017). Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. The International Journal of Advanced Manufacturing Technology, 88(1-4), 739-753.
Azizi, M. W., Belhadi, S., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2012). Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel. Journal of mechanical science and technology, 26(12), 4105-4114.
Rao, K. V., Murthy, B. S. N., & Rao, N. M. (2013). Cutting tool condition monitoring by analyzing surface roughness, work piece vibration and volume of metal removed for AISI 1040 steel in boring. Measurement, 46(10), 4075-4084.
Zhang, J. Z., Chen, J. C., & Kirby, E. D. (2007). Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of materials processing technology, 184(1-3), 233-239.
Khorasani, A. M., Yazdi, M. R. S., & Safizadeh, M. S. (2012). Analysis of machining parameters effects on surface roughness: a review. International Journal of Computational Materials Science and Surface Engineering, 5(1), 68-84.