Design of Water Heating By Utilizing Waste Heat of Air Conditioner

Hasan Basri, Ery Diniardi, Anwar Ilmar Ramadhan

Abstract


This plan aims to minimize wasted energy in the air freshener system and utilize the wasted energy to heat water. Here using a split type air conditioner system which is commonly used. The author slightly modified the air conditioning system which previously used an air conditioning condenser, here the author added a condenser with a water cooler that functions as a condenser and at the same time as a water heater. The energy used to heat the water is obtained from the heat released by the refrigerant so as to minimize the energy wasted when only using an air conditioning condenser. But the air conditioning condenser is still used in this system, because when hot water is not needed, the water in the heater does not flow and of course cannot take heat from the refrigerant. In this condition the air conditioning condenser can work to help the process of releasing heat from the refrigerant. This tool can heat water up to 43oC with a flow rate of 1 liter per 9 seconds which can be used at home, SOHO, office for bathing, washing face, washing hands, etc.


Keywords


Freshener system, energy, condenser, air conditioning

Full Text:

PDF

References


Dou, Y., Togawa, T., Dong, L., Fujii, M., Ohnishi, S., Tanikawa, H., & Fujita, T. (2018). Innovative planning and evaluation system for district heating using waste heat considering spatial configuration: A case in Fukushima, Japan. Resources, Conservation and Recycling, 128, 406-416.

AlQdah, K. S. (2011). Performance and evaluation of aqua ammonia auto air conditioner system using exhaust waste energy. Energy Procedia, 6, 467-476.

Dermawan, E., Syawaluddin, S., Abrori, M. R., Nelfiyanti, N., & Ramadhan, A. I. (2017). Analisa Perhitungan Beban Kalor Dan Pemilihan Kompresor Dalam Perancangan Air Blast Freezer Untuk Membekukan Adonan Roti. Teknika: Engineering and Sains Journal, 1(2), 141-144.

Oltmanns, J., Sauerwein, D., Dammel, F., Stephan, P., & Kuhn, C. (2020). Potential for waste heat utilization of hot‐water‐cooled data centers: A case study. Energy Science & Engineering, 8(5), 1793-1810.

Kiswoyo, E., & Ramadhan, A. I. (2017). Perancangan Dan Validasi Desain Alat Penukar Kalor Tipe Shell And Tube Menggunakan Computational Fluid Dynamics. Dinamika: Jurnal Ilmiah Teknik Mesin, 8(2), 39-46.

Lee, S., Shin, K. H., Lee, J. S., Lee, T. J., Sim, D. M., Jung, D., ... & Kim, J. H. (2020). Heat energy harvesting by utilizing waste heat with small temperature differences between heat source and sink. Journal of Mechanical Science and Technology, 34(1), 443-455.

Ramadhan, A. I., Diniardi, E., Basri, H., & Setyawan, D. T. (2015). Analisis Pengaruh Pemakaian Bahan Bakar Terhadap Efisiensi Hrsg Ka13E2 Di Muara Tawar Combine Cycle Power Plant. Dinamika: Jurnal Ilmiah Teknik Mesin, 7(1).

Javani, N., Dincer, I., & Naterer, G. F. (2012). Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles. Energy, 46(1), 109-116.

Ramadhan, A. I., Syawaluddin, S., Diniardi, E., & Sumiyarsono, D. Rancang Ulang Heat Exchanger Shell And Tube Pada Pressure Reducing System Untuk Compressed Natural Gas Kapasitas 150 m3/Jam. ROTASI, 17(3), 114-119.

Sonsaree, S., Jiajitsawat, S., Asaoka, T., Aguirre, H., & Tanaka, K. (2016, September). Organic rankine cycle power generation from industrial waste heat recovery integrated with solar hot water system by using vapor compression heat pump as heating booster in Thailand. In 2016 International Conference on Cogeneration, Small Power Plants and District Energy (ICUE) (pp. 1-6). IEEE.

Kang, B. H., Yun, C. H., & Kim, S. (2012). Greenhouse gas emissions of a district cooling system utilizing waste heat from a cogeneration plant. International Journal of Air-Conditioning and Refrigeration, 20(02), 1250002.

Kong, X. Q., Wang, R. Z., Wu, J. Y., Huang, X. H., Huangfu, Y., Wu, D. W., & Xu, Y. X. (2005). Experimental investigation of a micro-combined cooling, heating and power system driven by a gas engine. International journal of refrigeration, 28(7), 977-987.

Sprouse III, C., & Depcik, C. (2013). Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Applied thermal engineering, 51(1-2), 711-722.




DOI: https://doi.org/10.24853/jasat.3.3.89-96

Refbacks

  • There are currently no refbacks.


Copyright of Journal of Applied Sciences and Advanced Technology (JASAT)

 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Journal Statistic

Powered by Puskom-UMJ