PENGGUNAAN GRAPHIC ORGANIZER DALAM MENINGKATKAN KEMAMPUAN REPRESENTASI MATEMATIS SISWA
Abstract
Organizer terhadap kemampuan representasi matematis siswa. Penelitian ini dilakukan di MTs. Negeri 3 Jakarta pada semester 2 tahun ajaran 2014/ 2015. Metode yang digunakan untuk penelitian ini ialah quasi eksperimen yang menggunakan desain penelitian randomize sample posttest-only control group
design. Subyek pada penelitian ini berjumlah 73 siswa yang terdiri dari 37 siswa dalam kelas eksperimen dan 36 siswa kelas kontrol pada kelas VIII. Graphic
Organizer merupakan suatu bentuk visual dua dimensi yang menggambarkan hubungan antara fakta, ide, istilah, konsep, dan sebagainya. Kemampuan representasi matematis merupakan proses menyampaikan ide-ide, konsep pengetahuan tentang suatu hal melalui deskripsi dari sebuah objek melalui bentuk visual, simbol dan verbal sebagai alat untuk menyelesaikan permasalahan yang dihadapi. Kesimpulan dari penelitian ini adalah kemampuan representasi matematis siswa yang diajarkan dengan menggunakan Graphic Organizer lebih tinggi daripada kemampuan representasi matematis siswa yang diajarkan dengan menggunakan pembelajaran konvensional.
Full Text:
PDFReferences
Arikunto, Suharsimi. (2012). Dasar-dasar Evaluasi Pendidikan. Edisi.II, Cet.I Jakarta: Bumi
Aksara.
Ausubel, David P. (2012). “The Used of Advanced Organizersmin The Learning And
Retention Of Meaningful Verbal Material”. Journal of Educational Psychology. 51,
hal: 267-272.
Bretz, Rudy. (1971). A Taxonomy of Communication Media. Cliffs, N.J: Education
Technology Publication, Englewood.
Chiang, Chiu-ling. (2005). The Effect of Graphic Organizer on Taiwanese Tertiary Students
EFL Reading Comprehension and Attitudes Towards Reading in English. Tesis S2,
Australian Catholic University.
Çıkla, Oylum Akkus. (2004). The Effects of Multiple Representations-Based Instruction on
Seventh Grade Students’ Algebra Performance, Attitude Toward Mathematics, and
Representation Preference. Tesis S2, Middle East Technical University.
Clement, Lisa. (2004). A Model for Understanding, Using, and Connecting Representations.
Paper dari National Science Foundation.
Conklin, Wendy. (2006). 30 Graphic Organizer With Lessons &Transparancies. USA: Shell
Educational Publishing.
Departemen Pendidikan Nasional. (2002). Pendekatan Kontekstual. Jakarta: Direktorat
Jenderal Pendidikan Dasar dan Menengah.
Elizabeth. dkk, (1998). A Qualitative Investigation of the Use of Graphic Organizer. Paper
dari SUNY-Geneseo'Annual Reading and Literacy Research Symposium. New York.
Gagatsis, Athanasios dan Elia, Iliada. (2004). The Effects of Different Modes of
Representation on Mathematical Problem Solving. Proceedings of the 28th
Conference of the International Group for the Psychology of Mathematics Education.
Goss, Patricia A. (2009). The Influence of Graphic Organizer on Students’ Ability to
Summarize and Comprehend Science Content Regarding The Earth’s Changing
Surface. Tesis S2, University of Central Florida.
Hamzah, Ali dan Muhlisrarini. (2014). Perencanaan dan Strategi Pembelajaran Matematika.
Cet. 1. Jakarta: PT Rajagrafindo Persada.
Jose L. Villaega. dkk. (2009). “Representations in problem solving: a case study in
optimization problems”. Electronic Journal of Research in Educational Psychology.
(1).
Kadir. (2010). Statistika Untuk Penelitian Ilmu-Ilmu Sosial. Cet.I. Jakarta: Rosemata
Sampurna.
Kartini. (2009). Peranan Representasi dalam Pembelajaran Matematika. Makalah
disampaikan pada Seminar Nasional Matematika dan Pendidikan Matematika. 5
Desember. Yogyakarta: FMIPA UNY.
Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding It Up: Helping Children Learn
Mathematics. Washington, DC: National Academy Press
Lisa Clement, (2004). A Model for Understanding, Using, and Connecting Representations.
Paper dari National Science Foundation, 2004, hal. 2
Marzano Robert J. (2001). Classroom Instruction That Works: Research-Based Strategies for
Increasing Student Achievement. Alexandria, Virginia USA: Association for
Supervision and Curriculum Development.
Marzano Robert J. dan Brown John L., (2009). A Handbook for The Art and Science of
Teaching. Alexandria, Virginia USA: Association for Supervision and Curriculum
Development.
Marzano Robert J. (2007). The Art and Science of Teaching: A Comprehensive Framework
for Effective Instruction. Alexandria, Virginia USA: Association for Supervision and
Curriculum Development.
Mcknight, Katherine S. (2010). The Teacher’s Big Book of Graphic Organizer. San
Fransisco: Jossey-Bass.
Salkind, Gwenanne M. (2007). Mathematical Representation. Preparation and Professional
Development of Mathematics Teachers. George Mason University.
Sanjaya, Wina. (2011). Strategi Pembelajaran Berorientasi Standar Proses Pendidikan. ed. 1
cet. 8 Jakarta: Kencan.
Sugiyono. (2013). Metode Penelitian Pendidikan Pendekatan Kuantitatif Kualitatif dan
R&D. Bandung: Alfabeta, Cet. 16,
The National Council of Teachers of Mathematics (NCTM) Program Standards. (2003).
Programs for Initial Preparation of Mathematics Teachers, Standards for Middle
Level Mathematics Teachers.
Thompson, Max & Julia. (2004). Learning-Focused Strategies Notebook Teacher Materials,
.Learning Concepts, Inc.
Wackerly, Dennis D. dkk. (2008). Mathematical Statistics with Applications. Seventh Edition.
United States of America: Thomson Learning. Inc.
Wardhani, Sri. (2008). Analisis SI dan SKL Mata Pelajaran Matematika SMP/MTs untuk
Optimalisasi Tujuan Mata Pelajaran Matematika. Pusat Pengembangan Dan
Pemberdayaan Pendidik dan Tenaga Kependidikan Matematika.
Willis, Judy. (2006). Research-Based Strategies To Ignite Student Learning: Insights From A
Neurologist And Classroom Teacher. Alexandria, Virginia, USA: Association for
Supervision and Curriculum Development.
Wu-Yuin Hwang. dkk. (2007). “Multiple Representation Skills and Creativity Effects on
Mathematical Problem Solving using a Multimedia Whiteboard System”. Educational
Technology & Society. 10 (2).
Zollman, Alan. (2009). “Student Use Graphic Organizer To Improve Mathematical ProblemSolving Communictions”. Midle School Journal 41.2
http://search.proquest.com/docview/217437549/fulltext/138ce31254a29f78445/1?acco
untid=34598.
DOI: https://doi.org/10.24853/fbc.2.2.72-89
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 FIBONACCI: Jurnal Pendidikan Matematika dan Matematika
Jurnal Fibonacci Indexed By: |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License |