Oxide Inclusions Removal on Microstructure Properties of As-Cast Cobalt-Based Alloys

Muhammad Ilham Maulana

Abstract


A cobalt-based metal alloying process was conducted with the addition of the non-metallic element boron (B) using vacuum arc remelting (VAR). The process employed a water-cooled copper mold within an argon atmosphere. This research aimed to investigate the resulting microstructure and surface hardness values of the alloy. The metal melting rate during the VAR process was carefully controlled to achieve the desired microstructure and minimize defects, ensuring the production of high-quality alloys post-solidification. The process effectively facilitated the removal of oxide inclusions through flotation during remelting. The resulting alloy exhibited a dendritic microstructure characterized by large grain sizes. The average hardness value obtained for the alloy was 27.53 HRC.

Keywords


Cobalt-based alloy; Dendritic microstructure; Solidification; Vacuum arc remelting (VAR).

Full Text:

PDF

References


Ayup Tri Andika, “Article Review: Analisis Jenis-Jenis Teknik Pengecoran Logam Berdasarkan Jenis Cetakannya,” ENOTEK J. Energi dan Inov. Teknol., vol. 1, no. 2, pp. 17–20, 2022, doi: 10.30606/enotek.v1i2.1272.

Alting, Leo and G. Boothroyd, Liquid Materials: Casting Processes, Second Edi. Boca Raton: CRC Press, 2020. doi: 10.1201/9781003067177.

A. B. Badiru, From traditional manufacturing to additive manufacturing." Additive Manufacturing Handbook., 1st Editio. Boca Raton: CRC Press, 2017. doi: 10.1201/9781315119106.

J. Senthil, M. Prabhahar, C. Thiagarajan, S. Prakash, and R. Lakshmanan, “Studies on performance and process improvement of implementing novel vacuum process for new age castings,” Mater. Today Proc., vol. 33, pp. 813–819, 2020, doi: 10.1016/j.matpr.2020.06.269.

J. Campbell, “A Future for Vacuum Arc Remelting and Electroslag Remelting—A Critical Perspective,” Metals (Basel)., vol. 13, no. 10, 2023, doi: 10.3390/met13101634.

H. El Mir, A. Jardy, J. P. Bellot, P. Chapelle, D. Lasalmonie, and J. Senevat, “Thermal behaviour of the consumable electrode in the vacuum arc remelting process,” J. Mater. Process. Technol., vol. 210, no. 3, pp. 564–572, 2010, doi: 10.1016/j.jmatprotec.2009.11.008.

J. Cui, B. Li, Z. Liu, F. Qi, J. Xu, and J. Zhang, “Comparative investigation on ingot evolution and product quality under different arc distributions during vacuum arc remelting process,” J. Mater. Res. Technol., vol. 18, pp. 3991–4006, 2022, doi: 10.1016/j.jmrt.2022.04.058.

G. H. T. Álvares da Silva and J. Otubo, “Designing NiTiAg Shape Memory Alloys by Vacuum Arc Remelting: First Practical Insights on Melting and Casting,” Shape Mem. Superelasticity, vol. 4, no. 4, pp. 402–410, 2018, doi: 10.1007/s40830-018-0190-z.

P. A. Davidson, X. He, and A. J. Lowe, “Flow transitions in vacuum arc remelting,” Mater. Sci. Technol., vol. 16, no. 6, pp. 699–711, 2000, doi: 10.1179/026708300101508306.

E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, and J. Bohacek, “A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 51, no. 1, pp. 222–235, 2020, doi: 10.1007/s11663-019-01719-5.

M. Saini, “Implant biomaterials: A comprehensive review,” World J. Clin. Cases, vol. 3, no. 1, p. 52, 2015, doi: 10.12998/wjcc.v3.i1.52.

N. Eliaz, “Corrosion of Metallic Biomaterials: A Review,” Materials (Basel)., vol. 12, no. 3, 2019, doi: 10.3390/ma12030407.

M. Goenka, C. Nihal, R. Ramanathan, P. Gupta, A. Parashar, and J. Joel, “Automobile Parts Casting-Methods and Materials Used: A Review,” Mater. Today Proc., vol. 22, pp. 2525–2531, 2019, doi: 10.1016/j.matpr.2020.03.381.

S. Fu, Y. Long, Y. Sun, and J. Hu, “Microstructural evolution and phase transition dependent on annealing temperature and carbon content for LaFe11.5Si1.5Cx compounds prepared by arc-melting,” Intermetallics, vol. 39, pp. 79–83, 2013, doi: 10.1016/j.intermet.2013.03.022.

S. Spitans, H. Franz, H. Scholz, G. Reiter, and E. Baake, “Numerical simulation of the ingot growth during the vacuum arc remelting process,” Magnetohydrodynamics, vol. 53, no. 3, pp. 557–570, 2017, doi: 10.22364/mhd.53.3.12.

J. D. G. Stephen, G. L. Kumar, R. Vinesh, and G. Vikram, “Bio implant materials : Requirements , Types -and Properties – A review,” no. 12, pp. 18–26, 2017.

S. Yanagihara, K. Ueki, K. Ueda, M. Nakai, T. Nakano, and T. Narushima, “Development of Low-Yield Stress Co – Cr – W – Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents,” Metall. Mater. Trans. A, vol. 52, no. 9, pp. 4137–4145, 2021, doi: 10.1007/s11661-021-06374-7.

Y. S. Huang, M. S. Yang, J. S. Li, and L. G. Bai, “Vacuum arc remelting process of high-alloy bearing steel and multi-scale control of solidification structure,” Mater. Sci. Forum, vol. 817, pp. 826–836, 2015, doi: 10.4028/www.scientific.net/MSF.817.826.

R. Wang, R. Wang, D. Chen, G. Qin, and E. Zhang, “Novel CoCrWNi alloys with Cu addition: Microstructure, mechanical properties, corrosion properties and biocompatibility,” J. Alloys Compd., vol. 824, p. 153924, 2020, doi: 10.1016/j.jallcom.2020.153924.

R. A. Youness and M. A. Taha, “Review on Using Powder Metallurgy Method for Production of Metal- Based Nanocomposites,” Egypt. J. Chem., vol. 64, no. 12, pp. 7215–7222, 2021, doi: 10.21608/EJCHEM.2021.79970.3934.

L. Huang, X. Wang, X. Zhao, C. Wang, and Y. Yang, “Analysis on the key role in corrosion behavior of CoCrNiAlTi-based high entropy alloy,” Mater. Chem. Phys., p. 124007, 2020, doi: 10.1016/j.matchemphys.2020.124007.

G. Senopati, C. Sutowo, I. Kartika, and B. Suharno, “ScienceDirect The Effect of Solution Treatment on Microstructure and Mechanical Properties of Ti-6Mo-6Nb-8Sn Alloy,” Mater. Today Proc., vol. 13, pp. 224–228, 2019, doi: 10.1016/j.matpr.2019.03.218.

J. Yi, X. Zhuang, J. He, M. He, W. Liu, and S. Wang, “Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy,” Corros. Sci., vol. 189, no. March, p. 109628, 2021, doi: 10.1016/j.corsci.2021.109628.

R. Chang et al., “Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys,” J. Alloys Compd., vol. 790, pp. 732–743, 2019, doi: 10.1016/j.jallcom.2019.03.235.

A. Choudhury, “State of the Art of Superalloy Production for Aerospace and Other Application Using VIM/VAR or VIM/ESR,” ISIJ Int., vol. 32, no. 5, pp. 563–574, 1992, doi: 10.2355/isijinternational.32.563.

P. Zhao, Y. Gu, S. Yang, W. Liu, J. Li, and J. Du, “Study on the Molten Pool Behavior, Solidification Structure, and Inclusion Distribution in an Industrial Vacuum Arc Remelted Nickel-Based Superalloy,” Metall. Mater. Trans. B, vol. 54, no. 2, pp. 698–711, 2023, doi: 10.1007/s11663-023-02719-2.

X. Liu et al., “The morphology features, formation mechanism and elimination of channel segregation in industrial-scale Ti–Nb ingots produced by vacuum arc remelting,” J. Mater. Res. Technol., vol. 27, no. August, pp. 5029–5040, 2023, doi: 10.1016/j.jmrt.2023.11.009.

G. Brückmann and H. Scholz, “Vacuum Arc Metal Processing,” Handb. Vac. Arc Sci. Technol., pp. 552–589, 1996, doi: 10.1016/b978-081551375-9.50021-7.

C. R. Woodside, P. E. King, and C. Nordlund, “Arc distribution during the vacuum arc remelting of Ti-6Al-4V,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 44, no. 1, pp. 154–165, 2013, doi: 10.1007/s11663-012-9760-1.

H. Song, S. Lee, and K. Lee, “International Journal of Refractory Metals and Hard Materials Thermodynamic parameters , microstructure , and electrochemical properties of equiatomic TiMoVWCr and TiMoVNbZr high-entropy alloys prepared by vacuum arc remelting,” Int. J. Refract. Met. Hard Mater., vol. 99, no. May, p. 105595, 2021, doi: 10.1016/j.ijrmhm.2021.105595.

J. Grum, “Overview of residual stresses after induction surface hardening,” Int. J. Mater. Prod. Technol., vol. 29, no. 1–4, pp. 9–42, 2007, doi: 10.1504/ijmpt.2007.013129.

F. Theska et al., “Review of Microstructure–Mechanical Property Relationships in Cast and Wrought Ni-Based Superalloys with Boron, Carbon, and Zirconium Microalloying Additions,” Adv. Eng. Mater., vol. 25, no. 8, p. 2201514, 2023, doi: 10.1002/adem.202201514.

Y. Shi, Y. D. Wang, S. Li, R. Li, and Y. Wang, “Mechanical behavior in boron-microalloyed CoCrNi medium-entropy alloy studied by in situ high-energy X-ray diffraction,” Mater. Sci. Eng. A, vol. 788, no. May, p. 139600, 2020, doi: 10.1016/j.msea.2020.139600.

I. N. Murthy and J. B. Rao, “Evaluation of the microstructure , secondary dendrite arm spacing , and mechanical properties of Al – Si alloy castings made in sand and Fe – Cr slag molds,” vol. 24, no. 7, pp. 784–793, 2017, doi: 10.1007/s12613-017-1462-x.

J. Strickland, B. Nenchev, and H. Dong, “On Directional Dendritic Growth and Primary Spacing—A Review,” Crystals, vol. 10, no. 7, 2020, doi: 10.3390/cryst10070627.

B. Gorr et al., “High-temperature oxidation behavior of Mo–Si–B-based and Co–Re–Cr-based alloys,” Intermetallics, vol. 48, pp. 34–43, 2014, doi: 10.1016/j.intermet.2013.10.008.

U. Malayoglu and A. Neville, “Mo and W as alloying elements in Co-based alloys—their effects on erosion–corrosion resistance,” Wear, vol. 259, no. 1, pp. 219–229, 2005, doi: 10.1016/j.wear.2005.02.038.

M. C. Garcia-Mendez et al., “In vitro biocompatibility evaluation of a new co-cr-b alloy with potential biomedical application,” Metals (Basel)., vol. 11, no. 8, pp. 1–17, 2021, doi: 10.3390/met11081267.

Y. Uzun, H. Kovacı, A. F. Yetim, and A. Çelik, “Effect of boronizing on the structural, mechanical and tribological properties of CoCrW dental alloy produced by selective laser melting,” Ind. Lubr. Tribol., vol. 71, no. 3, pp. 348–356, 2019, doi: 10.1108/ILT-07-2018-0274.

C. Sutowo, G. Senopati, A. W. Pramono, and S. Supriadi, “Microstructures , mechanical properties , and corrosion behavior of novel multi-component Ti – 6Mo – 6Nb – xSn – xMn alloys for biomedical applications,” vol. 7, no. May, pp. 192–202, 2020, doi: 10.3934/matersci.2020.2.192.

G. Senopati, R. A. Rahman Rashid, I. Kartika, and S. Palanisamy, “Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review,” Metals (Basel)., vol. 13, no. 2, 2023, doi: 10.3390/met13020194.




DOI: https://doi.org/10.24853/sintek.18.2.64-70

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 SINTEK JURNAL: Jurnal Ilmiah Teknik Mesin

Powered by Puskom-UMJ