DISPOSISI MATEMATIS SISWA MELALUI MODEL PEMBELAJARAN GEOMETRI VAN HIELE
Abstract
van Hiele dan siswa yang pembelajarannya menggunakan model pembelajaran konvensional tergolong rendah.
Full Text:
PDFReferences
Burger & Shaughnessy. (1986). “Characterizing The Van Hiele Levels of Development in
Geometry”. Journal for Research in Mathematics Education, 17(1), 31-48.
Crowley, Mary L. (1987). “The Van Hiele Model of the Development of Geometric
Thought”. Dalam Lindquist, M.M and Shulte, A.P. (Eds.), Learning and Teaching
Geometry, K-12, (pp. 1-16). Reston VA: National Council of Teachers of Mathematics.
Departemen Pendidikan Nasional (2006). Kurikulum Tingkat Satuan Pendidikan; Standar
Kompetensi Matematika SMP/MTs. Jakarta: Depdiknas.
Erdogan, et al. (2009). “The Effect of the Van Hiele Model Based Instruction on the Creative
Thinking Levels of 6th Grade Primary School Students”. Educational Science: Theory
& Practice. 9(1). 181-194.
Hake, Richard. (1999). “Analizing Change/Gain Scores”. [Online] Tersedia:
http://www.physics.indiana.edu/-sdi/AnalyzingChange-Gain.pdf. [15 Desember 2013]
Kania, Anugrah. (2010). “Peningkatan Level Berpikir Geometri Van Hiele melalui
Pembelajaran Berbasis Masalah Berbantuan Cabry Geometry”. Skripsi, UPI (tidak
dipublikasikan).
Mahmudi, Ali. (2010). “Tinjauan Asosiasi antara Kemampuan Pemecahan Masalah
Matematis dan Disposisi Matematis”. Makalah Seminar Nasional Pendidikan, UNY,
Yogyakarta.
Maxwell, Kathleen. (2001). “Positive learning dispositions in mathematics”. [Online]
Tersedia di :
http://www.education.auckland.ac.nz/uoa/fms/default/education/docs/word/research/foe
d_paper/issue11/ACE_Paper_3_Issue_11.doc [07 Desember 2013]
Meltzer, David E. (2002). Addendum to : “The Relationship between Mathematics
Preparation and Conceptual Learning Gain in Physics: A Possible “Hidden Variable” in
Diagnostics Pre-test Score”. [Online]. Tersedia:
http://www.physics.iastate.edu/per/docs/Addendum on_normalized_gain. [05
November 2013]
Mullis, et.al. (2011). TIMSS 2011: International Results in Mathematics. United States:
TIMSS & PIRLS International Study Center.
Mulyana, E. (2009). “Pengaruh Model Pembelajaran Matematika Knisley Terhadap
Peningkatan Pemahaman dan Disposisi Matematis Siswa SMA Program IPA”.
Disertasi, UPI (tidak diterbitkan).
NCTM (1989). “Curriculum and Evaluation Standard for School Mathematics”. Virginia :
The NCTM Inc. [Online]. Tersedia: http://www.nctm.org/focalpoints. [08 Oktober
NCTM (2000). Principles and Standards for School Mathematics. Reston: Virginia.
Nur’aeni, Epon. (2007). “Model Pembelajaran Van Hiele untuk Meningkatkan Kemampuan
Pemahaman Konsep dan Komunikasi Matematis Siswa Sekolah Dasar”. Disertasi, UPI
(tidak dipublikasikan).
Ramdhani. (2012). “Pembelajaran Matematika dengan Pendekatan Problem Posing untuk
Meningkatkan Kemampuan Pemecahan Masalah dan Koneksi Matematis Siswa”. Tesis,
UPI Bandung (tidak diterbitkan).
Sugilar, Hamdan. (2012). “Meningkatkan Kemampuan Berpikir Kreatif dan Disposisi
Matematika Siswa Madrasah Tsanawiah Melalui Pembelajaran Generatif”. Tesis, UPI
(tidak dipublikasikan).
Suherman, dkk. (2003). Strategi Pembelajaran Matematika Kontemporer. Bandung:
IMSTEP-JICA.
Sumarmo, Utari. (2013). Berpikir dan Disposisi Matematik Serta Pembelajarannya.
Kumpulan Makalah: FPMIPA UPI
Syaban, Mumun. (2009). “Menumbuhkembangkan Daya dan Disposisi Matematis Siswa
Sekolah Menengah Atas melalui Pembelajaran Investigasi”. Educationist, 3(2), 129-
Thalheimer, Will. & Samantha, Cook. (2002). “How to Calculate Effect Sizes from Published
Research: A Simplified Methodology”. Work-Learning Research. [Online]. Tersedia:
http://education.gsu.edu/coshima/EPRS8530/Effect_Sizes_pdf4.pdf [21 Mei 2014].
Tisna, U. (2008). Permasalahan Pemebelajaran Geometri Datar SMP dan Alternatif
Pemecahannya. Yogyakarta: PPPPTK Matematika.
Usiskin, Zalman. (1982) Van Hiele levels and achievement in secondary school geometry:
Final report of the Cognitive Development and Achievement in Secondary School
Geometry (CDASSG) Project. Department of Education, University of Chicago, US.
Van de Walle & Jhon A. (2001). Geometric Thinking and Geometric Concepts. In Elementary
and Middle School. Mathe-matics: Teaching Developmentally, 4th ed. Boston: Allyn
and Bacon.
DOI: https://doi.org/10.24853/fbc.1.2.80-94
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 FIBONACCI: Jurnal Pendidikan Matematika dan Matematika
Jurnal Fibonacci Indexed By: |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License |