APROKSIMASI FUNGSI BERVARIASI-φ TERBATAS DI RUANG HENSTOCK-KURZWEIL DENGAN MENGGUNAKAN FUNGSI TANGGA
DOI:
https://doi.org/10.24853/fbc.8.2.121-126Kata Kunci:
aproksimasi, Henstock-Kurzweil, fungsi bervariasi terbatasAbstrak
Aproksimasi fungsi merupakan suatu proses pendekatan (hampiran) untuk memperoleh nilai fungsi yang mendekati nilai sebenarnya. Fungsi yang lebih rumit dapat didekati dengan fungsi yang lebih sederhana sehingga mempermudah proses komputasi. Pada artikel ini, aproksimasi fungsi difokuskan pada fungsi-fungsi bervariasi- terbatas di dengan memanfaatkan fungsi Young. Pertama ditunjukkan eksistensi keterintegralan fungsi bervariasi- terbatas dengan menggunakan kriteria Cauchy yang berlaku pada integral Henstock-Kurzweil. Kemudian, dibuktikan teorema aproksimasi fungsi bervariasi- terbatas di dengan menggunakan fungsi tanggaReferensi
Bongiorno, B., Piazaa L.D., dan Musial, K. 2008. “Approximation of Banach Space Valued Non-Absolutely Integrable Functions By Step Functions”. Glasgow Math. Journal. Vol 50, pp: 583-593.
Fathurrohman, Ilham. 2018. Aproksimasi Fungsi Menggunakan Metode Norm Minimum Pada Ruang Hilbert L2[a,b]. Skripsi. Bandung: Universitas Padjadjaran.
Herlinawati, Elin. 2019. “Metode PNSR Pada Interpolasi Gaussian”. Fibonacci: Jurnal Pendidikan Matematika dan Matematika. Vol. 5 (1), pp: 65-70.
Herlinawati, E. 2020. “Aproksimasi Fungsi Kontinu Terbatas Dengan Konvolusi”. Jurnal Matematika Sains Dan Teknologi. Vol 21(2), pp: 89-98. https://doi.org/10.33830/jmst.v21i2.1313.2020.
Herlinawati, Elin. 2021. “Beberapa sifat fungsi-fungsi Terintegralkan Henstock-Kurzweil di Ruang Berdimensi-N”. JMPM: Jurnal Matematika dan Pendidikan Matematika. Vol. 6 (1), pp: 81-89. https://doi.org/10.26594/jmpm.v6i1.2170.
Masta, A.A., Gunawan, Hendra., Budhi, W.S. 2016. “Inclusion Properties of Orlicz and Weak Orlicz Spaces”. J. Math. Fund. Sci. Vol. 48(3), pp:193-203.
Piazza, Luisa Di., Musial, kazimierz., dan Marraffa, Valeria. 2016. “Variational henstock Integrability of Banach Space Valued Functions”. Mathematica Bohemica. Vol 141(2), pp:287-296.
Torres, Fransisco J.M., dan Sanches-Perales, Salvador. 2009. “Inclusion Relations for the Spaces L(R), HK(R) ∩ BV(R), and L2(R)”. Russian Journal of Mathematical Physics. Vol. 16(2), pp: 287-289.
Varayu, Boonpogkrong, dan Chew, Tuan Seng. 2005a. “On Integrals With Integrators in BV_φ “. Real analysis Excange. Vo. 30(1), pp: 193-200.
Varayu, Boonpogkrong, dan Chew, Tuan Seng. 2005b. “The Henstock-Kurzweil Approach to Young Integrals with Integrators in BV_φ “. Mathematica Bohemica. Vol 131(3), pp:233-260.
##submission.downloads##
Diterbitkan
Terbitan
Bagian
Lisensi
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).