Analysis of Variances in Flame Length of Time For Maggot BSF Oil with Several Types of Oil

Dino Rimantho, Nur Yulianti Hidayah, Vector Anggit Pratomo, Anwar Ilmar Ramadhan

Abstract


Three problems are being faced simultaneously by Earth today: water (wastewater), energy, and food. However, considering the finite amount of land and the depletion of fossil fuels, this expansion is incompatible with the replenishment of natural resources in terms of both quantity and quality. Furthermore, another sustainable energy source that has gained international attention is biodiesel. However, research on the relative flash durations of Maggot BSFL oil has not been conducted. Consequently, this article will compare the flame times of many other types of oil with Maggot BSFL oil. This study uses a variety of oils as experimental subjects, including BSF maggot oil, used cooking oil, Pertamina Dex, and a combination of Pertamina Dex and BSF maggot oil. Analysis of the variations in flame time for each type of oil is done using statistical analysis. According to this analysis, the mixture of Maggot BSF oil and Pertamina Dex had the maximum flame, lasting between 16.31 and 16.44 minutes. Additionally, this study offers data on the notable variations in flame length for each type of oil, including used cooking oil, Pertamina Dex, Maggot BSF oil, and a combination of both. When creating biodiesel from Maggot BSF oil, the experiment's findings can serve as a starting point. in order for biodiesel made from Maggot BSF oil to provide Indonesia with a fresh option for the development of sustainable energy.


Keywords


Energy, fossil fuels, Maggot BSF, Flash duration, Flame, renewable energy

Full Text:

PDF

References


Y. H. P. Zhang, “Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus,” Energy Sci. Eng., vol. 1, no. 1, pp. 27–41, 2013, doi: 10.1002/ese3.2.

D. Mangindaan, E. R. Kaburuan, and B. Meindrawan, “Black Soldier Fly Larvae (Hermetia illucens) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis,” Sustain., vol. 14, no. 21, 2022, doi: 10.3390/su142113993.

M. Stocks, R. Stocks, B. Lu, C. Cheng, and A. Blakers, “Global Atlas of Closed-Loop Pumped Hydro Energy Storage,” Joule, vol. 5, no. 1, pp. 270–284, 2021, doi: 10.1016/j.joule.2020.11.015.

U. Saklani, P. P. Shrestha, A. Mukherji, and C. A. Scott, “Hydro-energy cooperation in South Asia: Prospects for transboundary energy and water security,” Environ. Sci. Policy, vol. 114, pp. 22–34, 2020, doi: https://doi.org/10.1016/j.envsci.2020.07.013.

C. Jung and D. Schindler, “Reasons for the Recent Onshore Wind Capacity Factor Increase,” Energies, vol. 16, no. 14, 2023, doi: 10.3390/en16145390.

F. Dalla Longa, L. P. Nogueira, J. Limberger, J.-D. van Wees, and B. van der Zwaan, “Scenarios for geothermal energy deployment in Europe,” Energy, vol. 206, p. 118060, 2020, doi: https://doi.org/10.1016/j.energy.2020.118060.

S. Gorjian, H. Sharon, H. Ebadi, K. Kant, F. B. Scavo, and G. M. Tina, “Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems,” J. Clean. Prod., vol. 278, p. 124285, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.124285.

Y. Zhang, J. Ren, Y. Pu, and P. Wang, “Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis,” Renew. Energy, vol. 149, pp. 577–586, 2020, doi: https://doi.org/10.1016/j.renene.2019.12.071.

D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. Kumar Sharma, and A. Jhalani, “A review on feedstocks, production processes, and yield for different generations of biodiesel,” Fuel, vol. 262, p. 116553, 2020, doi: https://doi.org/10.1016/j.fuel.2019.116553.

D. Rimantho, N. Y. Hidayah, V. A. Pratomo, A. Saputra, I. Akbar, and A. S. Sundari, “The strategy for developing wood pellets as sustainable renewable energy in Indonesia,” Heliyon, vol. 9, no. 3, p. e14217, 2023, doi: 10.1016/j.heliyon.2023.e14217.

A. Demirbas, “Importance of biodiesel as transportation fuel,” Energy Policy, vol. 35, no. 9, pp. 4661–4670, 2007, doi: https://doi.org/10.1016/j.enpol.2007.04.003.

Z. Yin et al., “A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions.,” Bioresour. Technol., vol. 301, p. 122804, Apr. 2020, doi: 10.1016/j.biortech.2020.122804.

S. He, W. Lian, X. Liu, W. Xu, W. Wang, and S. Qi, “Transesterification synthesis of high-yield biodiesel from black soldier fly larvae using the combination of Lipase Eversa Transform 2.0 and Lipase SMG1,” Food Sci. Technol., vol. 42, pp. 1–6, 2022, doi: 10.1590/fst.103221.

G. Knothe and J. Van Gerpen, The Biodiesel Handbook. 2010. doi: 10.1201/9781003040262.

W. G. Wang, D. W. Lyons, N. N. Clark, M. Gautam, and P. M. Norton, “Emissions from Nine Heavy Trucks Fueled by Diesel and Biodiesel Blend without Engine Modification,” Environ. Sci. Technol., vol. 34, no. 6, pp. 933–939, Mar. 2000, doi: 10.1021/es981329b.

S. K. Bhatia et al., “Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar,” Bioresour. Technol., vol. 302, p. 122872, 2020, doi: https://doi.org/10.1016/j.biortech.2020.122872.

W. A. da COSTA et al., “Appliance of a high pressure semi-batch reactor: Supercritical transesterification of soybean oil using methanol,” Food Sci. Technol., vol. 39, no. 3, pp. 754–773, 2019, doi: 10.1590/fst.05118.

H. C. Nguyen et al., “Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production,” J. Taiwan Inst. Chem. Eng., vol. 85, pp. 165–169, 2018, doi: 10.1016/j.jtice.2018.01.035.

K. C. Surendra, R. Olivier, J. K. Tomberlin, R. Jha, and S. K. Khanal, “Bioconversion of organic wastes into biodiesel and animal feed via insect farming,” Renew. Energy, vol. 98, pp. 197–202, 2016, doi: 10.1016/j.renene.2016.03.022.

H. C. Nguyen, S.-H. Liang, T. T. Doan, C.-H. Su, and P.-C. Yang, “Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology,” Energy Convers. Manag., vol. 145, pp. 335–342, 2017, doi: https://doi.org/10.1016/j.enconman.2017.05.010.

S. Diener, N. M. Studt Solano, F. Roa Gutiérrez, C. Zurbrügg, and K. Tockner, “Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae,” Waste and Biomass Valorization, vol. 2, no. 4, pp. 357–363, 2011, doi: 10.1007/s12649-011-9079-1.

F. Manzano-Agugliaro, M. J. Sanchez-Muros, F. G. Barroso, A. Martínez-Sánchez, S. Rojo, and C. Pérez-Bañón, “Insects for biodiesel production,” Renew. Sustain. Energy Rev., vol. 16, no. 6, pp. 3744–3753, 2012, doi: https://doi.org/10.1016/j.rser.2012.03.017.

Q. Li, L. Zheng, H. Cai, E. Garza, Z. Yu, and S. Zhou, “From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible,” Fuel, vol. 90, no. 4, pp. 1545–1548, 2011, doi: https://doi.org/10.1016/j.fuel.2010.11.016.

L. Zheng, Y. Hou, W. Li, S. Yang, Q. Li, and Z. Yu, “Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes,” Energy, vol. 47, no. 1, pp. 225–229, 2012, doi: https://doi.org/10.1016/j.energy.2012.09.006.

A. Singh and K. Kumari, “An inclusive approach for organic waste treatment and valorisation using Black Soldier Fly larvae: A review,” J. Environ. Manage., vol. 251, p. 109569, Dec. 2019, doi: 10.1016/J.JENVMAN.2019.109569.

N. Ewald, A. Vidakovic, M. Langeland, A. Kiessling, S. Sampels, and C. Lalander, “Fatty acid composition of black soldier fly larvae (Hermetia illucens) - Possibilities and limitations for modification through diet.,” Waste Manag., vol. 102, pp. 40–47, Feb. 2020, doi: 10.1016/j.wasman.2019.10.014.

D. J. Van Der Horst, W. J. A. Van Marrewijk, H. G. B. Vullings, and J. H. B. Diederen, “Metabolic neurohormones: Release, signal transduction and physiological responses of adipokinetic hormones in insects,” Eur. J. Entomol., vol. 96, no. 3, pp. 299–308, 1999, [Online]. Available: https://www.eje.cz/artkey/eje-199903-0010_Metabolic_neurohormones_Release_signal_transduction_and_physiological_responses_of_adipokinetic_hormones_in_i.php

G. K. Karnavar and K. K. Nayar, “Insect fat body,” J. Anim. Morphol. Physiol., vol. 20, no. 1–2, pp. 64–94, 1973, doi: 10.1146/annurev-ento-112408-085356.INSECT.

A. Van Huis, “Potential of insects as food and feed in assuring food security,” Annu. Rev. Entomol., vol. 58, pp. 563–583, 2013, doi: 10.1146/annurev-ento-120811-153704.

S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, “Review of biodiesel composition, properties, and specifications,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 143–169, 2012, doi: https://doi.org/10.1016/j.rser.2011.07.143.

Y. S. Wang and M. Shelomi, “Review of black soldier fly (Hermetia illucens) as animal feed and human food,” Foods, vol. 6, no. 10, 2017, doi: 10.3390/foods6100091.




DOI: https://doi.org/10.24853/jurtek.16.1.161-168

Refbacks

  • There are currently no refbacks.


Jurnal Teknologi Indexed by:

Directory of Open Access JournalGoogle ScholarRoadIndonesia Scientific Journal Database (ISJD)Index Copernicus International (ICI)Garba Rujukan Digital(Garuda)CrossrefScience and Technology Index (SINTA)Directory of Research Journal Indexing (DRJI)CiteFactorResearchgateIndonesia One SearchAcedemia.eduResearchBibAcademickeysBielefeld Academic Search Engine (BASE)JifactorPKP IndexSherpa romeoworldcat


Copyright of Jurnal Teknologi (e-ISSN:2460-0288, p-ISSN:2085-1669).

 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Powered by Puskom-UMJ